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Convexity

m Definition: X CR" is said to be convex if for any
two points z,y € X the segment|z,y] lies in X:

{fax+ (1 —-—a)y,0<a <1} CX.

B Definition: let X be a convex set.A functionf: X —R
is said to be convex if for all z,yc X and a €0, 1],

flax+ (1 - a)y) < af(z) + (1 - a)f(y).
With a strict inequality, fis said to be strictly convex.

fis saic

N

to be concave when —fis convex.

/R
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Properties of Convex Functions

® Theorem:let f be a differentiable function.Then, f
is convex iff dom(f) is convex and

vz,y € dom(f), f(y) — f(z) = Vf(z) (y— ).

- M f@)
flz) +Vi(z)(y — ).

® Theorem:let f be a twice differentiable function.
Then, f is convex iff its Hessian is positive semi-

definite:
Vz € dom(f), V2f(z) = 0.

Mehryar Mohri - Foundations of Machine Learning page 4



Constrained Optimization Problem

B Problem:LetX CRMandf,g;: X —=R,ic[l,m].A
constrained optimization problem has the form:

min f(x)

xeX
subject to: g;(x) < 0,7 € [1,m].

B Definition: The Lagrange function or Lagrangian
associated to this problem is the function defined

by:
\V/XEX\V/(X>O L(XO& ‘|‘Zazgz

;s are called Lagrange or dual varlables
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Sufficient Condition

(Lagrange, 1797)

B Theorem:Let P be a constrained optimization
problem over X =R If (x*, a*)is a saddle point,
that is vx € RY Va > 0, L(x*, o) < L(x*,a*) < L(x, a*),
then it is a solution of P.

® Proof: By the first inequality,

Va>0,L(x",a) < Lx",a") = Va>0,a - g(x") <a” - g(x")
(use @ — 400 then @ — 0) ={g(x") <0Aa™ - g(x™) = 0.
® |n view of that, the second inequality gives

Vx, L(x*, ") < L(x,a™) = Vx, f(x*) < f(x) + a™ - g(x).

Thus, for all z such thatg(z) <0, f(x*) < f(x).
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Constraint Qualification

B Definition: Assume that int X # (). Then, the following
is the strong constraint qualification or Slater’s
condition:

1X € int X: g(X) < 0.

B Definition: Assume that int X #(). Then, the following
is the weak constraint qualification or Slater’s
condition:

3% € intX: Vi € [1,m], (¢;(X) <0) V (g:(X) = 0 A g; affine).
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Necessary Conditions

B Theorem:Assume that fand g; ,i €

11, m],are

convex functions and that Slater’s condition holds.
If x is a solution of the constrained optimization
problem, then there exists a>0 such that (x,a)is a

saddle point of the Lagrangian.

B Theorem:Assume that fandg; ,i €
convex differentiable functions and
Slater’s condition holds. If x is a so
constrained optimization problem,

1, m|,are
that the weak

ution of the
then there

exists a>0 such that (x, ) is a saddle point of the

Lagrangian.
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Kuhn-Tucker’s Theorem
(Karush 1939; Kuhn-Tucker, 1951)
B Theorem:Assume that f,g;: X —R,i€[1, m] are
convex and differentiable and that the constraints
are qualified. ThenXis a solution of the constrained
program iff there exist @>0 such that:

ViL(Z, @) = Vi f(X) + & Vig(T) = 0
VoL(X, @) = g(X) <0 KKT

a-g(X) =) @gi(x)=0.
1=1
B Note: Last two conditions equivalent to
(9(%) <0) A (Vi € [1,m], aigi(X) =0).

v

complementary conditions
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® Since the constraints are qualified, if X is solution,
then there exists o such that (X, @) is a saddle
point. In that case, the three conditions are
verified (for the 3rd condition see proof of
sufficient condition slide).

® Conversely,assume that the conditions are
verified. Then, for any xsuch that g(x) <0,

Fx) — () > Vuf(®) - (x — ) (convexity of f)
= — Z a;Vxgi(X) - (x —X) (first condition)
> — ZEZ- 1g:(x) — g:(X)] (convexity of g;s)

- — Zai gi(x) >0, (third condition)
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Primal and Dual Problems

B Primal problem:

min - f(x)

subject to: g(x) < 0.

B Dual problem:

max inf L(x,«)
a xeX

subject to: a > 0.

Equivalent problems when constraints qualified.
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