Ranking
Motivation

- **Very large data sets:**
 - too large to display or process.
 - limited resources, need priorities.
 - ranking more desirable than classification.

- **Applications:**
 - search engines, information extraction.
 - decision making, auctions, fraud detection.

- Can we learn to predict ranking accurately?
Related Problem

- Rank aggregation: given n candidates and k voters each giving a ranking of the candidates, find ordering as close as possible to these.
 - closeness measured in number of pairwise misrankings.
 - problem NP-hard even for $k = 4$ (Dwork et al., 2001).
This Talk

- Score-based ranking
- Preference-based ranking
Score-Based Setting

- **Single stage**: learning algorithm
 - receives labeled sample of pairwise preferences;
 - returns scoring function \(h: U \rightarrow \mathbb{R} \).

- **Drawbacks**:
 - \(h \) induces a linear ordering for full set \(U \).
 - does not match a query-based scenario.

- **Advantages**:
 - efficient algorithms.
 - good theory: VC bounds, margin bounds, stability bounds (FISS 03, RCMS 05, AN 05, AGHHR 05, CMR 07).
Score-Based Ranking

- **Training data**: sample of i.i.d. labeled pairs drawn from $U \times U$ according to some distribution D,

 $$S = \left\{ (x_1, x_1', y_1), \ldots, (x_m, x_m', y_m) \right\} \in U \times U \times \{-1, 0, +1\},$$

 with $y_i = \begin{cases}
 +1 & \text{if } x_i' > \text{pref } x_i \\
 0 & \text{if } x_i = \text{pref } x_i' \text{ or no information} \\
 -1 & \text{if } x_i' < \text{pref } x_i.
 \end{cases}$

- **Problem**: find hypothesis $h: U \rightarrow \mathbb{R}$ in H with small generalization error

 $$R_D(h) = \Pr_{(x, x') \sim D} \left[(f(x, x') \neq 0) \land (f(x, x')(h(x') - h(x)) \leq 0) \right].$$
Empirical error:

\[
\hat{R}(h) = \frac{1}{m} \sum_{i=1}^{m} 1(y_i \neq 0) \land (y_i(h(x'_i) - h(x_i)) \leq 0).
\]

The relation \(x \mathcal{R} x' \iff f(x, x') = 1 \) may be non-transitive (needs not even be anti-symmetric).

Problem different from classification.
Distributional Assumptions

- Distribution over points: m points (literature).
 - labels for pairs.
 - squared number of examples $O(m^2)$.

- Distribution over pairs: m pairs.
 - label for each pair received.
 - independence assumption.
 - same (linear) number of examples.
Ranking Margin Bound

(Boyd, Cortes, MM, and Rostamizadeh 2012; MM, Rostamizadeh and Talwalkar, 2012)

Theorem: let H be a family of real-valued functions. Fix $\rho > 0$, then, for any $\delta > 0$, with probability at least $1 - \delta$ over the choice of a sample of size m, the following holds for all $h \in H$:

$$R(h) \leq \hat{R}_\rho(h) + \frac{2}{\rho} (\mathcal{R}_{m1}^D(H) + \mathcal{R}_{m2}^D(H)) + \sqrt{\frac{\log \frac{1}{\delta}}{2m}}.$$
Ranking with SVMs

- **Optimization problem**: application of SVMs.

\[
\min_{w, \xi} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{m} \xi_i \\
\text{subject to: } y_i \left[w \cdot (\Phi(x_i') - \Phi(x_i)) \right] \geq 1 - \xi_i \\
\xi_i \geq 0, \quad \forall i \in [1, m].
\]

- **Decision function**:

\[
h: x \mapsto w \cdot \Phi(x) + b.
\]
The algorithm coincides with SVMs using feature mapping

\[(x, x') \mapsto \Psi(x, x') = \Phi(x') - \Phi(x).\]

Can be used with kernels.

Algorithm directly based on margin bound.
Boosting for Ranking

- Use weak ranking algorithm and create stronger ranking algorithm.
- Ensemble method: combine base rankers returned by weak ranking algorithm.
- Finding simple relatively accurate base rankers often not hard.
- How should base rankers be combined?
CD RankBoost

(Freund et al., 2003; Rudin et al., 2005)

\[H \subseteq \{0, 1\}^X. \epsilon_t^0 + \epsilon_t^+ + \epsilon_t^- = 1, \epsilon_t^s(h) = \Pr_{(x, x') \sim D_t} \left[\text{sgn}(f(x, x')(h(x') - h(x))) = s \right]. \]

\[
\text{RankBoost}(S = ((x_1, x'_1, y_1), \ldots, (x_m, x'_m, y_m)))
\]

1. for \(i \leftarrow 1 \) to \(m \) do
2. \(D_1(x_i, x'_i) \leftarrow \frac{1}{m} \)
3. for \(t \leftarrow 1 \) to \(T \) do
4. \(h_t \leftarrow \text{base ranker in } H \text{ with smallest } \epsilon_t^- - \epsilon_t^+ = -E_{i \sim D_t} \left[y_i(h_t(x'_i) - h_t(x_i)) \right] \)
5. \(\alpha_t \leftarrow \frac{1}{2} \log \frac{\epsilon_t^+}{\epsilon_t^-} \)
6. \(Z_t \leftarrow \epsilon_t^0 + 2[\epsilon_t^+ \epsilon_t^-]^{1/2} \quad \triangleright \text{normalization factor} \)
7. for \(i \leftarrow 1 \) to \(m \) do
8. \(D_{t+1}(x_i, x'_i) \leftarrow \frac{D_t(x_i, x'_i) \exp \left[-\alpha_t y_i(h_t(x'_i) - h_t(x_i)) \right]}{Z_t} \)
9. \(\varphi_T \leftarrow \sum_{t=1}^T \alpha_t h_t \)
10. return \(\varphi_T \)
Distributions D_t over pairs of sample points:

- originally uniform.
- at each round, the weight of a misclassified example is increased.

observation: $D_{t+1}(x, x') = \frac{e^{-y[\varphi_t(x')-\varphi_t(x)]}}{|S| \prod_{s=1}^t Z_s}$, since

$$D_{t+1}(x, x') = \frac{D_t(x, x')e^{-y \alpha_t[h_t(x')-h_t(x)]}}{Z_t} = \frac{1}{|S|} \frac{e^{-y \sum_{s=1}^t \alpha_s[h_s(x')-h_s(x)]}}{\prod_{s=1}^t Z_s}.$$

- weight assigned to base classifier h_t: α_t directly depends on the accuracy of h_t at round t.

Objective Function: convex and differentiable.

\[
F(\alpha) = \sum_{(x,x',y) \in S} e^{-y[\varphi_T(x') - \varphi_T(x)]} = \sum_{(x,x',y) \in S} \exp \left(-y \sum_{t=1}^{T} \alpha_t [h_t(x') - h_t(x)] \right).
\]
• **Direction**: unit vector e_t with

$$e_t = \arg \min_t \left. \frac{dF(\alpha + \eta e_t)}{d\eta} \right|_{\eta=0}.$$

• Since $F(\alpha + \eta e_t) = \sum_{(x, x', y) \in S} e^{-y \sum_{s=1}^T \alpha_s [h_s(x') - h_s(x)]} e^{-y[\eta h_t(x') - h_t(x)]}$,

$$\left. \frac{dF(\alpha + \eta e_t)}{d\eta} \right|_{\eta=0} = - \sum_{(x, x', y) \in S} y[\eta h_t(x') - h_t(x)] \exp \left[-y \sum_{s=1}^T \alpha_s [h_s(x') - h_s(x)] \right]$$

$$= - \sum_{(x, x', y) \in S} y[\eta h_t(x') - h_t(x)] D_{T+1}(x, x') \left[m \prod_{s=1}^T Z_s \right]$$

$$= -[\epsilon_t^+ - \epsilon_t^-] \left[m \prod_{s=1}^T Z_s \right].$$

Thus, direction corresponding to base classifier selected by the algorithm.
• **Step size**: obtained via

\[
\frac{dF(\alpha + \eta e_t)}{d\eta} = 0
\]

\[
\iff - \sum_{(x,x',y) \in S} y[h_t(x') - h_t(x)] \exp \left[- y \sum_{s=1}^{T} \alpha_s [h_s(x') - h_s(x)] \right] e^{-y[h_t(x') - h_t(x)]} \eta = 0
\]

\[
\iff - \sum_{(x,x',y) \in S} y[h_t(x') - h_t(x)] D_{T+1}(x,x') \left[m \prod_{s=1}^{T} Z_s \right] e^{-y[h_t(x') - h_t(x)]} \eta = 0
\]

\[
\iff - \sum_{(x,x',y) \in S} y[h_t(x') - h_t(x)] D_{T+1}(x,x') e^{-y[h_t(x') - h_t(x)]} \eta = 0
\]

\[
\iff -[\epsilon_t^+ e^{-\eta} - \epsilon_t^- e^{\eta}] = 0
\]

\[
\iff \eta = \frac{1}{2} \log \frac{\epsilon_t^+}{\epsilon_t^-}.
\]

Thus, step size matches base classifier weight used in algorithm.
Bipartite Ranking

Training data:

- sample of negative points drawn according to D_-
 \[S_- = (x_1, \ldots, x_m) \in U. \]
- sample of positive points drawn according to D_+
 \[S_+ = (x'_1, \ldots, x'_m) \in U. \]

Problem: find hypothesis $h: U \rightarrow \mathbb{R}$ in H with small generalization error

\[
R_D(h) = \Pr_{x \sim D_-, x' \sim D_+} [h(x') < h(x)].
\]
More efficient algorithm in this special case (Freund et al., 2003).

Connection between AdaBoost and RankBoost (Cortes & MM, 04; Rudin et al., 05).

- if constant base ranker used.
- relationship between objective functions.

Bipartite ranking results typically reported in terms of AUC.
ROC Curve

Definition: the receiver operating characteristic (ROC) curve is a plot of the true positive rate (TP) vs. false positive rate (FP).

- **TP**: % positive points correctly labeled positive.
- **FP**: % negative points incorrectly labeled positive.

(Egan, 1975)
Area under the ROC Curve (AUC)

Definition: the AUC is the area under the ROC curve. Measure of ranking quality.

Equivalently,

\[
AUC(h) = \frac{1}{mm'} \sum_{i=1}^{m} \sum_{j=1}^{m'} 1_{h(x'_j) > h(x_i)} = \Pr_{x \sim \hat{D}_-} [h(x') > h(x)] - \hat{R}(h).
\]
AdaBoost and CD RankBoost

Objective functions: comparison.

\[
F_{\text{Ada}}(\alpha) = \sum_{x_i \in S_- \cup S_+} \exp (-y_i f(x_i)) \\
= \sum_{x_i \in S_-} \exp (+f(x_i)) + \sum_{x_i \in S_+} \exp (-f(x_i)) \\
= F_-(\alpha) + F_+(\alpha).
\]

\[
F_{\text{Rank}}(\alpha) = \sum_{(i,j) \in S_- \times S_+} \exp (-[f(x_j) - f(x_i)]) \\
= \sum_{(i,j) \in S_- \times S_+} \exp (+f(x_i)) \exp (-f(x_i)) \\
= F_-(\alpha)F_+(\alpha).
\]
AdaBoost and CD RankBoost

Property: AdaBoost (non-separable case).

- constant base learner $h = 1 \rightarrow$ equal contribution of positive and negative points (in the limit).
- consequence: AdaBoost asymptotically achieves optimum of CD RankBoost objective.

Observations: if $F_+(\alpha) = F_-(\alpha)$,

$$d(F_{\text{Rank}}) = F_+ d(F_-) + F_- d(F_+)$$

$$= F_+ (d(F_-) + d(F_+))$$

$$= F_+ d(F_{\text{Ada}}).$$

(Rudin et al., 2005)
Bipartite RankBoost - Efficiency

- Decomposition of distribution: for \((x, x') \in (S_-, S_+)\),

\[
D(x, x') = D_-(x)D_+(x').
\]

- Thus,

\[
D_{t+1}(x, x') = \frac{D_t(x, x')e^{-\alpha_t[h_t(x') - h_t(x)]}}{Z_t} = \frac{D_{t,-}(x)e^{\alpha_t h_t(x)}}{Z_{t,-}} \cdot \frac{D_{t,+}(x')e^{-\alpha_t h_t(x')}}{Z_{t,+}},
\]

with

\[
Z_{t,-} = \sum_{x \in S_-} D_{t,-}(x)e^{\alpha_t h_t(x)} \quad Z_{t,+} = \sum_{x' \in S_+} D_{t,+}(x')e^{-\alpha_t h_t(x')},
\]
This Talk

- Score-based ranking
- Preference-based ranking
Preference-Based Setting

Definitions:

• U: universe, full set of objects.
• V: finite query subset to rank, $V \subseteq U$.
• τ^*: target ranking for V (random variable).

Two stages: can be viewed as reduction.

• learn preference function $h: U \times U \rightarrow [0, 1]$.
• given V, use h to determine ranking σ of V.

Running-time: measured in terms of $|\text{calls to } h|$.
Preference-Based Setting

Definitions:

- U: universe, full set of objects.
- V: finite query subset to rank, $V \subseteq U$.
- τ^*: target ranking for V (random variable).

Two stages: can be viewed as reduction.

- learn preference function $h: U \times U \to [0, 1]$.
- given V, use h to determine ranking σ of V.

Running-time: measured in terms of $|\text{calls to } h|$.
Preference-Based Ranking Problem

- **Training data**: pairs \((V, \tau^*)\) sampled i.i.d. according to \(D\):

 \[(V_1, \tau^*_1), (V_2, \tau^*_2), \ldots, (V_m, \tau^*_m)\] \(V_i \subseteq U\).

- **Problem**: for any query set \(V \subseteq U\), use \(h\) to return ranking \(\sigma_{h,V}\) close to target \(\tau^*\) with small average error

\[
R(h, \sigma) = \mathbb{E}_{(V, \tau^*) \sim D} [L(\sigma_{h,V}, \tau^*)].
\]
Preference Function

- $h(u, v)$ close to 1 when u preferred to v, close to 0 otherwise. For the analysis, $h(u, v) \in \{0, 1\}$.
- Assumed pairwise consistent:
 \[h(u, v) + h(v, u) = 1. \]
- May be non-transitive, e.g.,
 \[h(u, v) = h(v, w) = h(w, u) = 1. \]
- Output of classifier or ‘black-box’.
Loss Functions

(for fixed \((V, \tau^*)\))

- **Preference loss:**
 \[
 L(h, \tau^*) = \frac{2}{n(n - 1)} \sum_{u \neq v} h(u, v) \tau^*(v, u).
 \]

- **Ranking loss:**
 \[
 L(\sigma, \tau^*) = \frac{2}{n(n - 1)} \sum_{u \neq v} \sigma(u, v) \tau^*(v, u).
 \]
(Weak) Regret

- **Preference regret:**

\[
\mathcal{R}_{class}'(h) = \mathbb{E}_{V, \tau^*}[L(h|V, \tau^*)] - \mathbb{E}_{V} \min_{\tilde{h}} \mathbb{E}_{\tau^*|V}[L(\tilde{h}, \tau^*)].
\]

- **Ranking regret:**

\[
\mathcal{R}_{rank}'(A) = \mathbb{E}_{V, \tau^*, S}[L(A_s(V), \tau^*)] - \mathbb{E}_{V} \min_{\tilde{\sigma} \in S(V)} \mathbb{E}_{\tau^*|V}[L(\tilde{\sigma}, \tau^*)].
\]
Deterministic Algorithm

(Balcan et al., 07)

- **Stage one**: standard classification. Learn preference function \(h : U \times U \rightarrow [0, 1] \).

- **Stage two**: sort-by-degree using comparison function \(h \).
 - sort by number of points ranked below.
 - quadratic time complexity \(O(n^2) \).
Randomized Algorithm

(Ailon & MM, 08)

Stage one: standard classification. Learn preference function $h : U \times U \rightarrow [0, 1]$.

Stage two: randomized QuickSort (Hoare, 61) using h as comparison function.

- comparison function non-transitive unlike textbook description.
- but, time complexity shown to be $O(n \log n)$ in general.
Randomized QS

\[h(v, u) = 1 \quad \text{left recursion} \]
\[h(u, v) = 1 \quad \text{right recursion} \]
Deterministic Algo. - Bipartite Case

\(V = V_+ \cup V_- \)

Bounds: for deterministic sort-by-degree algorithm

- **expected loss:**
 \[
 \mathbb{E}_{V, \tau^*} \left[L(A(V), \tau^*) \right] \leq 2 \mathbb{E}_{V, \tau^*} \left[L(h, \tau^*) \right].
 \]

- **regret:**
 \[
 \mathcal{R}'_{rank}(A(V)) \leq 2 \mathcal{R}'_{class}(h).
 \]

Time complexity: \(\Omega(|V|^2) \).

(Balcan et al., 07)
Randomized Algo. - Bipartite Case

\(V = V_+ \cup V_- \) \hspace{1cm} (Ailon & MM, 08)

- **Bounds:** for randomized QuickSort (Hoare, 61).

 - expected loss (equality):
 \[
 \mathbb{E}_{V, \tau^*, s} [L(Q^h_s(V), \tau^*)] = \mathbb{E}_{V, \tau^*} [L(h, \tau^*)].
 \]

 - regret:
 \[
 \mathcal{R}'_{rank}(Q^h_s(\cdot)) \leq \mathcal{R}'_{class}(h).
 \]

- **Time complexity:**
 - full set: \(O(n \log n) \).
 - top \(k \): \(O(n + k \log k) \).
Proof Ideas

- QuickSort decomposition:

\[p_{uv} + \frac{1}{3} \sum_{w \notin \{u,v\}} p_{uvw} \left(h(u, w)h(w, v) + h(v, w)h(w, u) \right) = 1. \]

- Bipartite property:

\[\tau^*(u, v) + \tau^*(v, w) + \tau^*(w, u) = \tau^*(v, u) + \tau^*(w, v) + \tau^*(u, w). \]
Lower Bound

- **Theorem**: for any deterministic algorithm A, there is a bipartite distribution for which

$$\mathcal{R}_{rank}(A) \geq 2 \mathcal{R}_{class}(h).$$

- thus, factor of 2 is best in deterministic case.
- randomization necessary for better bound.

- **Proof**: take simple case $U = V = \{u, v, w\}$ and assume that h induces a cycle.

- up to symmetry, A returns u, v, w or w, v, u.
Lower Bound

- If A returns u, v, w, then choose τ^* as:

- If A returns w, v, u, then choose τ^* as:

$$L[h, \tau^*] = \frac{1}{3};$$

$$L[A, \tau^*] = \frac{2}{3}.$$
Guarantees - General Case

- Loss bound for QuickSort:
 \[
 \mathbb{E}_{V,\tau^*,s}[L(Q^h_s(V),\tau^*)] \leq 2\mathbb{E}_{V,\tau^*}[L(h,\tau^*)].
 \]

- Comparison with optimal ranking (see (CSS 99)):
 \[
 \mathbb{E}_s[L(Q^h_s(V),\sigma_{optimal})] \leq 2L(h,\sigma_{optimal})
 \]
 \[
 \mathbb{E}_s[L(h,Q^h_s(V))] \leq 3L(h,\sigma_{optimal}),
 \]

where \(\sigma_{optimal} = \arg\min_{\sigma} L(h,\sigma)\).
Weight Function

- **Generalization:**

\[\tau^*(u, v) = \sigma^*(u, v) \omega(\sigma^*(u), \sigma^*(v)). \]

- **Properties:** needed for all previous results to hold,
 - **symmetry:** \(\omega(i, j) = \omega(j, i) \) for all \(i, j \).
 - **monotonicity:** \(\omega(i, j), \omega(j, k) \leq \omega(i, k) \) for \(i < j < k \).
 - **triangle inequality:** \(\omega(i, j) \leq \omega(i, k) + \omega(k, j) \) for all triplets \(i, j, k \).
Weight Function - Examples

- **Kemeny:**
 \[w(i, j) = 1, \ \forall i, j. \]

- **Top-k:**
 \[w(i, j) = \begin{cases}
 1 & \text{if } i \leq k \text{ or } j \leq k; \\
 0 & \text{otherwise.}
\end{cases} \]

- **Bipartite:**
 \[w(i, j) = \begin{cases}
 1 & \text{if } i \leq k \text{ and } j > k; \\
 0 & \text{otherwise.}
\end{cases} \]

- **k-partite:** can be defined similarly.
(Strong) Regret Definitions

- Ranking regret:

\[\mathcal{R}_{\text{rank}}(A) = \mathbb{E}_{V, \tau^*} [L(A_s(V), \tau^*)] - \min_{\tilde{\sigma}} \mathbb{E}_{V, \tau^*} [L(\tilde{\sigma}|V, \tau^*)]. \]

- Preference regret:

\[\mathcal{R}_{\text{class}}(h) = \mathbb{E}_{V, \tau^*} [L(h|V, \tau^*)] - \min_{\tilde{h}} \mathbb{E}_{V, \tau^*} [L(\tilde{h}|V, \tau^*)]. \]

- All previous regret results hold if for all \(V_1, V_2 \supseteq \{u, v\}, \)

\[\mathbb{E}_{\tau^*|V_1} [\tau^*(u, v)] = \mathbb{E}_{\tau^*|V_2} [\tau^*(u, v)] \]

for all \(u, v \) (pairwise independence on irrelevant alternatives).
References

References

