Foundations of Machine Learning
Learning with Finite Hypothesis Sets

Mehryar Mohri
Courant Institute and Google Research
mohri@cims.nyu.edu
Motivation

Some computational learning questions

- What can be learned efficiently?
- What is inherently hard to learn?
- A general model of learning?

Complexity

- Computational complexity: time and space.
- Sample complexity: amount of training data needed to learn successfully.
- Mistake bounds: number of mistakes before learning successfully.
This lecture

- PAC Model
- Sample complexity, finite H, consistent case
- Sample complexity, finite H, inconsistent case
Definitions and Notation

- \(X \): set of all possible instances or examples, e.g., the set of all men and women characterized by their height and weight.

- \(c: X \rightarrow \{0, 1\} \): the target concept to learn; can be identified with its support \(\{x \in X : c(x) = 1\} \).

- \(C \): concept class, a set of target concepts \(c \).

- \(D \): target distribution, a fixed probability distribution over \(X \). Training and test examples are drawn according to \(D \).
Definitions and Notation

- \(S \) : training sample.
- \(H \) : set of concept hypotheses, e.g., the set of all linear classifiers.
- The learning algorithm receives sample \(S \) and selects a hypothesis \(h_S \) from \(H \) approximating \(c \).
Errors

- **True error or generalization error** of \(h \) with respect to the target concept \(c \) and distribution \(D \):

\[
R(h) = \Pr_{x \sim D}[h(x) \neq c(x)] = \mathbb{E}_{x \sim D}[1_{h(x) \neq c(x)}].
\]

- **Empirical error**: average error of \(h \) on the training sample \(S \) drawn according to distribution \(D \),

\[
\hat{R}_S(h) = \Pr_{x \sim \hat{D}}[h(x) \neq c(x)] = \mathbb{E}_{x \sim \hat{D}}[1_{h(x) \neq c(x)}] = \frac{1}{m} \sum_{i=1}^{m} 1_{h(x_i) \neq c(x_i)}.
\]

- **Note**: \(R(h) = \mathbb{E}_{S \sim D^m} \left[\hat{R}_S(h) \right] \).
PAC Model

(Valiant, 1984)

- **PAC learning**: Probably Approximately Correct learning.

- **Definition**: concept class C is **PAC-learnable** if there exists a learning algorithm L such that:

 - for all $c \in C$, $\epsilon > 0$, $\delta > 0$, and all distributions D,

 $$\Pr_{S \sim D^m}[R(h_S) \leq \epsilon] \geq 1 - \delta,$$

 - for samples S of size $m = poly(1/\epsilon, 1/\delta)$ for a fixed polynomial.
Remarks

- Concept class C is known to the algorithm.
- Distribution-free model: no assumption on D.
- Both training and test examples drawn $\sim D$.
- Probably: confidence $1 - \delta$.
- Approximately correct: accuracy $1 - \epsilon$.
- Efficient PAC-learning: L runs in time $\text{poly}(1/\epsilon, 1/\delta)$.
- What about the cost of the representation of $c \in C$?
PAC Model - New Definition

- Computational representation:
 - cost for $x \in X$ in $O(n)$.
 - cost for $c \in C$ in $O(size(c))$.

- Extension: running time.

 $O(poly(1/\epsilon, 1/\delta)) \rightarrow O(poly(1/\epsilon, 1/\delta, n, size(c)))$.
Example - Rectangle Learning

Problem: learn unknown axis-aligned rectangle R using as small a labeled sample as possible.

Hypothesis: rectangle R'. In general, there may be false positive and false negative points.
Example - Rectangle Learning

- **Simple method**: choose tightest consistent rectangle \(R' \) for a large enough sample. How large a sample? Is this class PAC-learnable?

- What is the probability that \(R(R') > \epsilon \)?
Example - Rectangle Learning

- **Fix** $\epsilon > 0$ and assume $\Pr_D[R] > \epsilon$ (otherwise the result is trivial).

- **Let** r_1, r_2, r_3, r_4 be four smallest rectangles along the sides of R such that $\Pr_D[r_i] \geq \frac{\epsilon}{4}$.

\[
R = [l, r] \times [b, t] \\
r_4 = [l, s_4] \times [b, t] \\
\inf\{s: \Pr_D[[l, s] \times [b, t]] \geq \frac{\epsilon}{4}\} \\
\Pr_D[[l, s_4] \times [b, t]] < \frac{\epsilon}{4}
\]
Example - Rectangle Learning

Errors can only occur in $R - R'$. Thus (geometry),

$$R(R') > \epsilon \Rightarrow R' \text{ misses at least one region } r_i.$$

Therefore, $\Pr[R(R') > \epsilon] \leq \Pr[\bigcup_{i=1}^{4} \{R' \text{ misses } r_i \}]$

$$\leq \sum_{i=1}^{4} \Pr[\{R' \text{ misses } r_i \}]$$

$$\leq 4(1 - \frac{\epsilon}{4})^m \leq 4e^{-\frac{me}{4}}.$$
Example - Rectangle Learning

Set $\delta > 0$ to match the upper bound:

$$4e^{-\frac{me}{4}} \leq \delta \iff m \geq \frac{4}{\epsilon} \log \frac{4}{\delta}.$$

Then, for $m \geq \frac{4}{\epsilon} \log \frac{4}{\delta}$, with probability at least $1 - \delta$,

$$R(R') \leq \epsilon.$$
Notes

- Infinite hypothesis set, but simple proof.
- Does this proof readily apply to other similar concepts classes?
- Geometric properties:
 - key in this proof.
 - in general non-trivial to extend to other classes, e.g., non-concentric circles (see HW2, 2006).

Need for more general proof and results.
This lecture

- PAC Model
- Sample complexity, finite H, consistent case
- Sample complexity, finite H, inconsistent case
Learning Bound for Finite H - Consistent Case

Theorem: let H be a finite set of functions from X to $\{0, 1\}$ and L an algorithm that for any target concept $c \in H$ and sample S returns a consistent hypothesis $h_S: \hat{R}_S(h_S) = 0$. Then, for any $\delta > 0$, with probability at least $1 - \delta$,

$$R(h_S) \leq \frac{1}{m} (\log |H| + \log \frac{1}{\delta}).$$
Learning Bound for Finite H - Consistent Case

Proof: for any $\epsilon > 0$, define $H_\epsilon = \{ h \in H : R(h) > \epsilon \}$. Then,

\[
\begin{align*}
\Pr \left[\exists h \in H_\epsilon : \hat{R}_S(h) = 0 \right] &= \Pr \left[\hat{R}_S(h_1) = 0 \lor \cdots \lor \hat{R}_S(h_{|H_\epsilon|}) = 0 \right] \\
&\leq \sum_{h \in H_\epsilon} \Pr \left[\hat{R}_S(h) = 0 \right] \quad \text{(union bound)} \\
&\leq \sum_{h \in H_\epsilon} (1 - \epsilon)^m \leq |H|(1 - \epsilon)^m \leq |H|e^{-m\epsilon}.
\end{align*}
\]
Remarks

- The algorithm can be ERM if problem realizable.
- Error bound linear in $\frac{1}{m}$ and only logarithmic in $\frac{1}{\delta}$.
- $\log_2 |H|$ is the number of bits used for the representation of H.
- Bound is loose for large $|H|$.
- Uninformative for infinite $|H|$.
Conjunctions of Boolean Literals

- **Example** for $n = 6$.
- **Algorithm:** start with $x_1 \land \bar{x}_1 \land \cdots \land x_n \land \bar{x}_n$ and rule out literals incompatible with positive examples.

\[
\begin{array}{cccccc}
0 & 1 & 1 & 0 & 1 & 1 & + \\
0 & 1 & 1 & 1 & 1 & 1 & + \\
0 & 0 & 1 & 1 & 0 & 1 & - \\
0 & 1 & 1 & 1 & 1 & 1 & + \\
1 & 0 & 0 & 1 & 1 & 0 & - \\
0 & 1 & 0 & 0 & 1 & 1 & + \\
0 & 1 & ? & ? & 1 & 1 & + \\
\end{array}
\]

$\bar{x}_1 \land x_2 \land x_5 \land x_6$.

Mehryar Mohri - Foundations of Machine Learning
Conjunctions of Boolean Literals

- **Problem:** learning class C_n of conjunctions of boolean literals with at most n variables (e.g., for $n = 3$, $x_1 \land \overline{x_2} \land x_3$).

- **Algorithm:** choose h consistent with S.

 - Since $|H| = |C_n| = 3^n$, sample complexity:

 $$m \geq \frac{1}{\epsilon} \left((\log 3) n + \log \frac{1}{\delta} \right).$$

 $\delta = .02$, $\epsilon = .1$, $n = 10$, $m \geq 149$.

 - Computational complexity: polynomial, since algorithmic cost per training example is $\in O(n)$.
This lecture

- PAC Model
- Sample complexity, finite H, consistent case
- Sample complexity, finite H, inconsistent case
Inconsistent Case

- No $h \in H$ is a consistent hypothesis.

- The typical case in practice: difficult problems, complex concept class.

- But, inconsistent hypotheses with a small number of errors on the training set can be useful.

- Need a more powerful tool: Hoeffding’s inequality.
Hoeffding’s Inequality

- **Corollary**: for any $\epsilon > 0$ and any hypothesis $h : X \to \{0, 1\}$, the following inequalities holds:

 \[
 \Pr[R(h) - \hat{R}(h) \geq \epsilon] \leq e^{-2m\epsilon^2}
 \]
 \[
 \Pr[\hat{R}(h) - R(h) \geq \epsilon] \leq e^{-2m\epsilon^2}.
 \]

- **Combining these one-sided inequalities yields**

 \[
 \Pr[|R(h) - \hat{R}(h)| \geq \epsilon] \leq 2e^{-2m\epsilon^2}.
 \]
Application to Learning Algorithm?

- Can we apply that bound to the hypothesis h_S returned by our learning algorithm when training on sample S?

- No, because h_S is not a fixed hypothesis, it depends on the training sample. Note also that $\mathbb{E}[\hat{R}(h_S)]$ is not a simple quantity such as $R(h_S)$.

- Instead, we need a bound that holds simultaneously for all hypotheses $h \in H$, a **uniform convergence bound**.
Generalization Bound - Finite H

Theorem: let H be a finite hypothesis set, then, for any $\delta > 0$, with probability at least $1 - \delta$,

$$\forall h \in H, \ R(h) \leq \hat{R}_S(h) + \sqrt{\frac{\log |H| + \log \frac{2}{\delta}}{2m}}.$$

Proof: By the union bound,

$$\Pr \left[\max_{h \in H} |R(h) - \hat{R}_S(h)| > \epsilon \right]$$

$$= \Pr \left[|R(h_1) - \hat{R}_S(h_1)| > \epsilon \lor \ldots \lor |R(h_{|H|}) - \hat{R}_S(h_{|H|})| > \epsilon \right]$$

$$\leq \sum_{h \in H} \Pr \left[|R(h) - \hat{R}_S(h)| > \epsilon \right]$$

$$\leq 2|H| \exp(-2m\epsilon^2).$$
Thus, for a finite hypothesis set, whp,

$$\forall h \in H, R(h) \leq \hat{R}_S(h) + O\left(\sqrt{\frac{\log |H|}{m}}\right).$$

Error bound in $O\left(\frac{1}{\sqrt{m}}\right)$ (quadratically worse).

$log_2 |H|$ can be interpreted as the number of bits needed to encode H.

Occam’s Razor principle (theologian William of Occam): “plurality should not be posited without necessity”.

Remarks
Occam’s Razor

- Principle formulated by controversial theologian William of Occam: “plurality should not be posited without necessity”, rephrased as “the simplest explanation is best”;
 - invoked in a variety of contexts, e.g., syntax. Kolmogorov complexity can be viewed as the corresponding framework in information theory.
 - here, to minimize true error, choose the most parsimonious explanation (smallest $|H|$).
 - we will see later other applications of this principle.
Lecture Summary

- **C is PAC-learnable** if \(\exists L, \forall c \in C, \forall \epsilon, \delta > 0, m = P \left(\frac{1}{\epsilon}, \frac{1}{\delta} \right), \Pr_{S \sim D^m} \left[R(h_S) \leq \epsilon \right] \geq 1 - \delta. \)

- **Learning bound, finite \(H \) consistent case:**
 \[R(h) \leq \frac{1}{m} \left(\log |H| + \log \frac{1}{\delta} \right). \]

- **Learning bound, finite \(H \) inconsistent case:**
 \[R(h) \leq \tilde{R}_S(h) + \sqrt{\frac{\log |H| + \log \frac{2}{\delta}}{2m}}. \]

- How do we deal with infinite hypothesis sets?
References

Appendix
Problem: each $x \in X$ defined by n boolean features. Let C be the set of all subsets of X.

Question: is C PAC-learnable?

Sample complexity: H must contain C. Thus,

$$|H| \geq |C| = 2^{(2^n)}.$$

The bound gives $m = \frac{1}{\epsilon}((\log 2) 2^n + \log \frac{1}{\delta})$.

It can be proved that C is not PAC-learnable, it requires an exponential sample size.
k-Term DNF Formulae

- **Definition**: expressions of the form $T_1 \lor \cdots \lor T_k$ with each term T_i conjunctions of boolean literals with at most n variables.

- **Problem**: learning k-term DNF formulae.

- **Sample complexity**: $|H| = |C| = 3^{nk}$. Thus, polynomial sample complexity $\frac{1}{\epsilon}((\log 3) \ nk + \log \frac{1}{\delta})$.

- **Time complexity**: intractable if $RP \neq NP$: the class is then not efficiently PAC-learnable (proof by reduction from graph 3-coloring). But, a strictly larger class is!
k-CNF Expressions

Definition: expressions $T_1 \land \cdots \land T_j$ of arbitrary length j with each term T_i a disjunction of at most k boolean attributes.

Algorithm: reduce problem to that of learning conjunctions of boolean literals. $(2n)^k$ new variables:

$$(u_1, \ldots, u_k) \rightarrow Y_{u_1, \ldots, u_k}.$$

- the transformation is a bijection;
- effect of the transformation on the distribution is not an issue: PAC-learning allows any distribution D.
k-Term DNF Terms and k-CNФ Expressions

- **Observation:** any k-term DNF formula can be written as a k-CNФ expression. By associativity,

\[
\bigvee_{i=1}^{k} u_{i,1} \land \cdots \land u_{i,n_i} = \bigwedge_{j_1 \in [1,n_1], \ldots, j_k \in [1,n_k]} u_{1,j_1} \lor \cdots \lor u_{k,j_k}.
\]

- **Example:** \((u_1 \land u_2 \land u_3) \lor (v_1 \land v_2 \land v_3) = \bigwedge_{i,j=1}^{3} (u_i \lor v_j).\)

- But, in general converting a k-CNФ (equiv. to a k-term DNF) to a k-term DNF is intractable.

- **Key aspects of PAC-learning definition:**
 - cost of representation of concept C.
 - choice of hypothesis set H.