Foundations of Machine Learning
Learning with Finite Hypothesis Sets

Mehryar Mohri
Courant Institute and Google Research
mohri@cims.nyu.edu
Motivation

Some computational learning questions

• What can be learned efficiently?
• What is inherently hard to learn?
• A general model of learning?

Complexity

• Computational complexity: time and space.
• Sample complexity: amount of training data needed to learn successfully.
• Mistake bounds: number of mistakes before learning successfully.
This lecture

- PAC Model
- Sample complexity, finite H, consistent case
- Sample complexity, finite H, inconsistent case
Definitions and Notation

- **X**: set of all possible instances or examples, e.g., the set of all men and women characterized by their height and weight.

- **$c : X \rightarrow \{0, 1\}$**: the target concept to learn; can be identified with its support $\{x \in X : c(x) = 1\}$.

- **C**: concept class, a set of target concepts c.

- **D**: target distribution, a fixed probability distribution over X. Training and test examples are drawn according to D.

Definitions and Notation

- S: training sample.

- H: set of concept hypotheses, e.g., the set of all linear classifiers.

- The learning algorithm receives sample S and selects a hypothesis h_S from H approximating c.
Errors

- True error or generalization error of h with respect to the target concept c and distribution D:

$$R(h) = \Pr_{x \sim D} [h(x) \neq c(x)] = \mathbb{E}_{x \sim D} [1_{h(x) \neq c(x)}].$$

- Empirical error: average error of h on the training sample S drawn according to distribution D,

$$\hat{R}_S(h) = \Pr_{x \sim \hat{D}} [h(x) \neq c(x)] = \mathbb{E}_{x \sim \hat{D}} [1_{h(x) \neq c(x)}] = \frac{1}{m} \sum_{i=1}^{m} 1_{h(x_i) \neq c(x_i)}.$$

- Note: $R(h) = \mathbb{E}_{S \sim D^m} \left[\hat{R}_S(h) \right]$.
PAC Model

(Valiant, 1984)

- **PAC learning**: Probably Approximately Correct learning.

- **Definition**: concept class C is **PAC-learnable** if there exists a learning algorithm L such that:

 - for all $c \in C$, $\epsilon > 0$, $\delta > 0$, and all distributions D,

 $$\Pr_{S \sim D^m} [R(h_S) \leq \epsilon] \geq 1 - \delta,$$

 - for samples S of size $m = pol(1/\epsilon, 1/\delta)$ for a fixed polynomial.
Remarks

- Concept class C is known to the algorithm.
- Distribution-free model: no assumption on D.
- Both training and test examples drawn $\sim D$.
- Probably: confidence $1 - \delta$.
- Approximately correct: accuracy $1 - \epsilon$.
- Efficient PAC-learning: L runs in time $\text{poly}(1/\epsilon, 1/\delta)$.
- What about the cost of the representation of $c \in C$?
PAC Model - New Definition

Computational representation:

- cost for $x \in X$ in $O(n)$.
- cost for $c \in C$ in $O(\text{size}(c))$.

Extension: running time.

$$O(poly(1/\epsilon, 1/\delta)) \rightarrow O(poly(1/\epsilon, 1/\delta, n, \text{size}(c))).$$
Example - Rectangle Learning

Problem: learn unknown axis-aligned rectangle R using as small a labeled sample as possible.

Hypothesis: rectangle R'. In general, there may be false positive and false negative points.
Example - Rectangle Learning

- **Simple method**: choose tightest consistent rectangle R' for a large enough sample. How large a sample? Is this class PAC-learnable?

- What is the probability that $R(R') > \epsilon$?
Example - Rectangle Learning

- Fix $\epsilon > 0$ and assume $\Pr_D[R] > \epsilon$ (otherwise the result is trivial).

- Let r_1, r_2, r_3, r_4 be four smallest rectangles along the sides of R such that $\Pr_D[r_i] \geq \frac{\epsilon}{4}$.

\[R = [l, r] \times [b, t] \]
\[r_4 = [l, s_4] \times [b, t] \]
\[s_4 = \inf \{ s : \Pr_D[[l, s] \times [b, t]] \geq \frac{\epsilon}{4} \} \]
\[\Pr_D[[l, s_4] \times [b, t]] < \frac{\epsilon}{4} \]
Example - Rectangle Learning

Errors can only occur in $R - R'$. Thus (geometry),

$$R(R') > \epsilon \Rightarrow R' \text{ misses at least one region } r_i.$$

Therefore, $\Pr[R(R') > \epsilon] \leq \Pr[\bigcup_{i=1}^{4}\{R' \text{ misses } r_i\}]$

$$\leq \sum_{i=1}^{4} \Pr[\{R' \text{ misses } r_i\}]$$

$$\leq 4(1 - \frac{\epsilon}{4})^m \leq 4e^{-\frac{me}{4}}.$$
Example - Rectangle Learning

Set $\delta > 0$ to match the upper bound:

$$4e^{-\frac{m\epsilon}{4}} \leq \delta \iff m \geq \frac{4}{\epsilon} \log \frac{4}{\delta}.$$

Then, for $m \geq \frac{4}{\epsilon} \log \frac{4}{\delta}$, with probability at least $1 - \delta$,

$$R(R') \leq \epsilon.$$
Notes

- Infinite hypothesis set, but simple proof.
- Does this proof readily apply to other similar concepts classes?
- Geometric properties:
 - key in this proof.
 - in general non-trivial to extend to other classes, e.g., non-concentric circles (see HW2, 2006).

Need for more general proof and results.
This lecture

- PAC Model
- Sample complexity, finite H, consistent case
- Sample complexity, finite H, inconsistent case
Learning Bound for Finite H - Consistent Case

Theorem: let H be a finite set of functions from X to $\{0, 1\}$ and L an algorithm that for any target concept $c \in H$ and sample S returns a consistent hypothesis h_S: $\hat{R}_S(h_S) = 0$. Then, for any $\delta > 0$, with probability at least $1 - \delta$,

$$R(h_S) \leq \frac{1}{m} \left(\log |H| + \log \frac{1}{\delta} \right).$$
Learning Bound for Finite H - Consistent Case

Proof:

\[
\Pr[\exists h \in H : \hat{R}_S(h) = 0 \land R(h) > \epsilon] \\
= \Pr[\left(\hat{R}_S(h_1) = 0 \land R(h_1) > \epsilon\right) \lor \cdots \lor \left(\hat{R}_S(h_{|H|}) = 0 \land R(h_{|H|}) > \epsilon\right)] \\
\leq \sum_{h \in H} \Pr[\hat{R}_S(h) = 0 \land R(h) > \epsilon] \tag{union bound} \\
\leq \sum_{h \in H} \Pr[\hat{R}_S(h) = 0 \mid R(h) > \epsilon] \\
\leq \sum_{h \in H} (1 - \epsilon)^m = |H|(1 - \epsilon)^m \leq |H|e^{-m\epsilon}.
\]
Remarks

- The algorithm can be ERM if problem realizable.
- Error bound linear in $\frac{1}{m}$ and only logarithmic in $\frac{1}{\delta}$.
- $\log_2 |H|$ is the number of bits used for the representation of H.
- Bound is loose for large $|H|$.
- Uninformative for infinite $|H|$.
Conjunctions of Boolean Literals

- **Example** for $n = 6$.

- **Algorithm**: start with $x_1 \land \bar{x}_1 \land \cdots \land x_n \land \bar{x}_n$ and rule out literals incompatible with positive examples.

\[
\begin{array}{cccccc|c}
0 & 1 & 1 & 1 & 0 & 1 & 1 & + \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & + \\
0 & 0 & 1 & 1 & 0 & 1 & - \\
0 & 1 & 0 & 1 & 1 & 1 & + \\
1 & 0 & 0 & 1 & 1 & 0 & - \\
0 & 1 & 0 & 0 & 1 & 1 & + \\
0 & 1 & ? & ? & 1 & 1 & \rightarrow \bar{x}_1 \land x_2 \land x_5 \land x_6.
\end{array}
\]
Conjunctions of Boolean Literals

Problem: learning class \(C_n \) of conjunctions of boolean literals with at most \(n \) variables (e.g., for \(n = 3 \), \(x_1 \land \overline{x_2} \land x_3 \)).

Algorithm: choose \(h \) consistent with \(S \).

- Since \(|H| = |C_n| = 3^n \), sample complexity:
 \[
 m \geq \frac{1}{\epsilon} \left((\log 3) \cdot n + \log \frac{1}{\delta} \right).
 \]
 \(\delta = .02, \epsilon = .1, n = 10, m \geq 149. \)

- Computational complexity: polynomial, since algorithmic cost per training example is \(\log O(n) \).
This lecture

- PAC Model
- Sample complexity, finite H, consistent case
- Sample complexity, finite H, inconsistent case
Inconsistent Case

- No $h \in H$ is a consistent hypothesis.
- The typical case in practice: difficult problems, complex concept class.
- But, inconsistent hypotheses with a small number of errors on the training set can be useful.
- Need a more powerful tool: Hoeffding’s inequality.
Hoeffding’s Inequality

Corollary: for any $\epsilon > 0$ and any hypothesis $h : X \rightarrow \{0, 1\}$ the following inequalities holds:

\[
\Pr[R(h) - \hat{R}(h) \geq \epsilon] \leq e^{-2m\epsilon^2}
\]

\[
\Pr[\hat{R}(h) - R(h) \geq \epsilon] \leq e^{-2m\epsilon^2}.
\]

Combining these one-sided inequalities yields

\[
\Pr[|R(h) - \hat{R}(h)| \geq \epsilon] \leq 2e^{-2m\epsilon^2}.
\]
Application to Learning Algorithm?

- Can we apply that bound to the hypothesis h_S returned by our learning algorithm when training on sample S?

- No, because h_S is not a fixed hypothesis, it depends on the training sample. Note also that $\mathbb{E}[\hat{R}(h_S)]$ is not a simple quantity such as $R(h_S)$.

- Instead, we need a bound that holds simultaneously for all hypotheses $h \in H$, a uniform convergence bound.
Generalization Bound - Finite H

- **Theorem:** Let H be a finite hypothesis set, then, for any $\delta > 0$, with probability at least $1 - \delta$,

\[
\forall h \in H, \ R(h) \leq \hat{R}_S(h) + \sqrt{\frac{\log |H| + \log \frac{2}{\delta}}{2m}}.
\]

- **Proof:** By the union bound,

\[
\Pr \left[\max_{h \in H} \left| R(h) - \hat{R}_S(h) \right| > \epsilon \right] \\
= \Pr \left[\left| R(h_1) - \hat{R}_S(h_1) \right| > \epsilon \lor \ldots \lor \left| R(h_{|H|}) - \hat{R}_S(h_{|H|}) \right| > \epsilon \right] \\
\leq \sum_{h \in H} \Pr \left[\left| R(h) - \hat{R}_S(h) \right| > \epsilon \right] \\
\leq 2|H| \exp(-2m\epsilon^2).
\]
Remarks

- Thus, for a finite hypothesis set, whp,

\[\forall h \in H, R(h) \leq \hat{R}_S(h) + O\left(\sqrt{\frac{\log |H|}{m}}\right). \]

- Error bound in \(O\left(\frac{1}{\sqrt{m}}\right) \) (quadratically worse).

- \(\log_2 |H| \) can be interpreted as the number of bits needed to encode \(H \).

- Occam’s Razor principle (theologian William of Occam): “plurality should not be posited without necessity”.
Occam’s Razor

- Principle formulated by controversial theologian William of Occam: “plurality should not be posited without necessity”, rephrased as “the simplest explanation is best”;
- invoked in a variety of contexts, e.g., syntax. Kolmogorov complexity can be viewed as the corresponding framework in information theory.
- here, to minimize true error, choose the most parsimonious explanation (smallest $|H|$).
- we will see later other applications of this principle.
Lecture Summary

- **C is PAC-learnable** if \(\exists L, \forall c \in C, \forall \epsilon, \delta > 0, m = P \left(\frac{1}{\epsilon}, \frac{1}{\delta} \right), \)
 \[
 \Pr_{S \sim D^m} \left[R(h_S) \leq \epsilon \right] \geq 1 - \delta.
 \]

- **Learning bound, finite \(H \) consistent case:**
 \[
 R(h) \leq \frac{1}{m} \left(\log |H| + \log \frac{1}{\delta} \right).
 \]

- **Learning bound, finite \(H \) inconsistent case:**
 \[
 R(h) \leq \widehat{R}_S(h) + \sqrt{\frac{\log |H| + \log \frac{2}{\delta}}{2m}}.
 \]

- **How do we deal with infinite hypothesis sets?**
References

Appendix
Universal Concept Class

Problem: each \(x \in X \) defined by \(n \) boolean features. Let \(C \) be the set of all subsets of \(X \).

Question: is \(C \) PAC-learnable?

Sample complexity: \(H \) must contain \(C \). Thus,

\[
|H| \geq |C| = 2^{2^n}.
\]

The bound gives \(m = \frac{1}{\epsilon}((\log 2) 2^n + \log \frac{1}{\delta}) \).

It can be proved that \(C \) is not PAC-learnable, it requires an exponential sample size.
k-Term DNF Formulae

Definition: expressions of the form \(T_1 \lor \cdots \lor T_k \) with each term \(T_i \) conjunctions of boolean literals with at most \(n \) variables.

Problem: learning \(k \)-term DNF formulae.

Sample complexity: \(|H| = |C| = 3^{nk}\). Thus, polynomial sample complexity
\[
\frac{1}{\epsilon} \left(\left(\log 3 \right) nk + \log \frac{1}{\delta} \right).
\]

Time complexity: intractable if \(RP \neq NP \): the class is then not efficiently PAC-learnable (proof by reduction from graph 3-coloring). But, a strictly larger class is!
k-CNF Expressions

- **Definition**: expressions $T_1 \land \cdots \land T_j$ of arbitrary length j with each term T_i a disjunction of at most k boolean attributes.

- **Algorithm**: reduce problem to that of learning conjunctions of boolean literals. $(2n)^k$ new variables:

$$
(u_1, \ldots, u_k) \rightarrow Y_{u_1, \ldots, u_k}.
$$

- the transformation is a bijection;
- effect of the transformation on the distribution is not an issue: PAC-learning allows any distribution \mathcal{D}.
k-Term DNF Terms and k-CNF Expressions

Observation: any k-term DNF formula can be written as a k-CNF expression. By associativity,

\[
\bigvee_{i=1}^{k} u_{i,1} \land \cdots \land u_{i,n_i} = \bigwedge_{j_1 \in [1,n_1], \ldots, j_k \in [1,n_k]} u_{1,j_1} \lor \cdots \lor u_{k,j_k}.
\]

Example:

\[
(u_1 \land u_2 \land u_3) \lor (v_1 \land v_2 \land v_3) = \bigwedge_{i,j=1}^{3} (u_i \lor v_j).
\]

But, in general converting a k-CNF (equiv. to a k-term DNF) to a k-term DNF is intractable.

Key aspects of PAC-learning definition:

- cost of representation of concept C.
- choice of hypothesis set H.