Foundations of Machine Learning
Lecture 9

Mehryar Mohri
Courant Institute and Google Research
mohri@cims.nyu.edu
Multi-Class Classification
Motivation

- Real-world problems often have multiple classes: text, speech, image, biological sequences.
- Algorithms studied so far: designed for binary classification problems.
- How do we design multi-class classification algorithms?
 - can the algorithms used for binary classification be generalized to multi-class classification?
 - can we reduce multi-class classification to binary classification?
Multi-Class Classification Problem

- **Training data**: sample drawn i.i.d. from set X according to some distribution D,
 \[S = ((x_1, y_1), \ldots, (x_m, y_m)) \in X \times Y,\]
 - **mono-label case**: $\text{Card}(Y) = k$.
 - **multi-label case**: $Y = \{-1, +1\}^k$.

- **Problem**: find classifier $h : X \to Y$ in H with small generalization error,
 - **mono-label case**: $R_D (h) = \mathbb{E}_{x \sim D} [1_{h(x) \neq f(x)}]$.
 - **multi-label case**: $R_D (h) = \mathbb{E}_{x \sim D} \left[\frac{1}{k} \sum_{l=1}^k 1_{[h(x)]_l \neq [f(x)]_l} \right]$.
Notes

- In most tasks considered, number of classes $k \leq 100$.
- For k large, problem often not treated as a multi-class classification problem (ranking or density estimation, e.g., automatic speech recognition).
- Computational efficiency issues arise for larger ks.
- In general, classes not balanced.
Multi-Class Classification - Margin

- **Hypothesis set** H:
 - functions $h : X \times Y \rightarrow \mathbb{R}$.
 - label returned: $x \mapsto \arg\max_{y \in Y} h(x, y)$.

- **Margin**:
 - $\rho_h(x, y) = h(x, y) - \max_{y' \neq y} h(x, y')$.
 - empirical margin loss:
 $$\hat{R}_\rho(h) = \frac{1}{m} \sum_{i=1}^{m} \Phi_\rho(\rho_h(x, y)).$$
Multi-Class Margin Bound

Theorem: let $H \subseteq \mathbb{R}^{X \times Y}$ with $Y = \{1, \ldots, k\}$. Fix $\rho > 0$. Then, for any $\delta > 0$, with probability at least $1 - \delta$, the following multi-class classification bound holds for all $h \in H$:

$$R(h) \leq \hat{R}_\rho(h) + \frac{4k}{\rho} \hat{\mathcal{R}}_m(\Pi_1(H)) + \sqrt{\frac{\log \frac{1}{\delta}}{2m}},$$

with $\Pi_1(H) = \{x \mapsto h(x, y) : y \in Y, h \in H\}$.
Kernel Based Hypotheses

- Hypothesis set $H_{K,p}$:
 - Φ feature mapping associated to PDS kernel K.
 - functions $(x, y) \mapsto w_y \cdot \Phi(x), y \in \{1, \ldots, k\}$.
 - label returned: $x \mapsto \arg\max_{y \in \{1,\ldots,k\}} w_y \cdot \Phi(x)$.
 - for any $p \geq 1$,

$$H_{K,p} = \{(x, y) \in X \times [1, k] \mapsto w_y \cdot \Phi(x): W = (w_1, \ldots, w_k)^\top, \|W\|_{H,p} \leq \Lambda\}.$$
Multi-Class Margin Bound - Kernels

Theorem: let $K: X \times X \rightarrow \mathbb{R}$ be a PDS kernel and let $\Phi: X \rightarrow \mathbb{H}$ be a feature mapping associated to K. Fix $\rho > 0$. Then, for any $\delta > 0$, with probability at least $1 - \delta$, the following multiclass bound holds for all $h \in H_{K,\rho}$:

$$R(h) \leq \hat{R}_\rho(h) + 4k \sqrt{\frac{r^2 \Lambda^2}{\rho^2 m}} + \sqrt{\frac{\log \frac{1}{\delta}}{2m}},$$

where $r^2 = \sup_{x \in X} K(x, x)$.

(MM et al. 2012)
Approaches

- Single classifier:
 - Multi-class SVMs.
 - AdaBoost.MH.
 - Decision trees.

- Combination of binary classifiers:
 - One-vs-all.
 - One-vs-one.
 - Error-correcting codes.
Multi-Class SVMs

(Weston and Watkins, 1999; Crammer and Singer, 2001)

- Optimization problem:

\[
\min_{w, \xi} \frac{1}{2} \sum_{l=1}^{k} \|w_l\|^2 + C \sum_{i=1}^{m} \xi_i
\]

subject to:
\[
w_{y_i} \cdot x_i + \delta_{y_i,l} \geq w_l \cdot x_i + 1 - \xi_i
\]
\[(i, l) \in [1, m] \times Y.\]

- Decision function:

\[
h: x \mapsto \arg\max_{l \in Y} (w_l \cdot x).
\]
Notes

- Directly based on generalization bounds.

- Comparison with (Weston and Watkins, 1999): single slack variable per point, maximum of slack variables (penalty for worst class):

 \[
 \sum_{l=1}^{k} \xi_{il} \rightarrow \max_{l=1}^{k} \xi_{il}.
 \]

- PDS kernel instead of inner product

- Optimization: complex constraints, \(m^k\)-size problem.
 - specific solution based on decomposition into \(m\) disjoint sets of constraints (Crammer and Singer, 2001).
Dual Formulation

- **Optimization problem:** α_i ith row of matrix $\alpha \in \mathbb{R}^{m \times k}$

$$
\max_{\alpha=[\alpha_{ij}]} \sum_{i=1}^{m} \alpha_i \cdot e_{y_i} - \frac{1}{2} \sum_{i=1}^{m} (\alpha_i \cdot \alpha_j)(x_i \cdot x_j)
$$

subject to: $\forall i \in [1, m], (0 \leq \alpha_{iy_i} \leq C') \land (\forall j \neq y_i, \alpha_{ij} \leq 0) \land (\alpha_i \cdot 1 = 0)$.

- **Decision function:**

$$
h(x) = \arg\max_{l=1}^{k} \left(\sum_{i=1}^{m} \alpha_{il}(x_i \cdot x) \right).
$$
AdaBoost

Training data (multi-label case):

\[(x_1, y_1), \ldots, (x_m, y_m) \in X \times \{-1, 1\}^k.\]

Reduction to binary classification:

- each example leads to \(k \) binary examples:

\[(x_i, y_i) \rightarrow ((x_i, 1), y_i[1]), \ldots, ((x_i, k), y_i[k]), i \in [1, m].\]

- apply AdaBoost to the resulting problem.

- choice of \(\alpha_t \).

Computational cost: \(mk \) distribution updates at each round.
AdaBoost.MH

$$H \subseteq \{ -1, +1 \}^k \times X \times Y.$$

AdaBoost.MH \(S = ((x_1, y_1), \ldots, (x_m, y_m)) \)

1. **for** \(i \leftarrow 1 \) **to** \(m \) **do**
 2. **for** \(l \leftarrow 1 \) **to** \(k \) **do**
 3. \(D_1(i, l) \leftarrow \frac{1}{mk} \)
 4. **for** \(t \leftarrow 1 \) **to** \(T \) **do**
 5. \(h_t \leftarrow \text{base classifier in } H \text{ with small error } \epsilon_t = \Pr_{D_t}[h_t(x_i, l) \neq y_i[l]] \)
 6. \(\alpha_t \leftarrow \text{choose } \triangleright \text{to minimize } Z_t \)
 7. \(Z_t \leftarrow \sum_{i,l} D_t(i, l) \exp(-\alpha_t y_i[l] h_t(x_i, l)) \)
 8. **for** \(i \leftarrow 1 \) **to** \(m \) **do**
 9. **for** \(l \leftarrow 1 \) **to** \(k \) **do**
 10. \(D_{t+1}(i, l) \leftarrow \frac{D_t(i, l) \exp(-\alpha_t y_i[l] h_t(x_i, l))}{Z_t} \)
 11. \(f_T \leftarrow \sum_{t=1}^{T} \alpha_t h_t \)
 12. **return** \(h_T = \text{sgn}(f_T) \)
Bound on Empirical Error

Theorem: The empirical error of the classifier output by AdaBoost.MH verifies:

$$\hat{R}(h) \leq \prod_{t=1}^{T} Z_t.$$

Proof: similar to the proof for AdaBoost.

Choice of α_t:

- **for** $H \subseteq (\{-1, +1\}^k)^{X \times Y}$, **as for** AdaBoost, $\alpha_t = \frac{1}{2} \log \frac{1-\epsilon_t}{\epsilon_t}$.
- **for** $H \subseteq ([-1, 1]^k)^{X \times Y}$, **same choice**: minimize upper bound.
- **other cases**: numerical/approximation method.
Notes

- Objective function:

\[F(\alpha) = \sum_{i=1}^{m} \sum_{l=1}^{k} e^{-y_i[l] f_n(x_i, l)} = \sum_{i=1}^{m} \sum_{l=1}^{k} e^{-y_i[l]} \sum_{t=1}^{n} \alpha_t h_t(x_i, l). \]

- All comments and analysis given for AdaBoost apply here.

- Alternative: Adaboost.MR, which coincides with a special case of RankBoost (ranking lecture).
Decision Trees
Different Types of Questions

- Decision trees
 - $X \in \{\text{blue, white, red}\}$: categorical questions.
 - $X \leq a$: continuous variables.

- Binary space partition (BSP) trees:
 - $\sum_{i=1}^{n} \alpha_i X_i \leq a$: partitioning with convex polyhedral regions.

- Sphere trees:
 - $||X - a_0|| \leq a$: partitioning with pieces of spheres.
Hypotheses

- In each region R_t,
 - **classification**: majority vote - ties broken arbitrarily,
 \[\hat{y}_t = \arg\max_{y \in Y} \left| \left\{ x_i \in R_t : i \in [1, m], y_i = y \right\} \right|. \]
 - **regression**: average value,
 \[\hat{y}_t = \frac{1}{|S \cap R_t|} \sum_{\substack{x_i \in R_t \atop i \in [1, m]}} y_i. \]
- **Form of hypotheses**:
 \[h : x \mapsto \sum_t \hat{y}_t 1_{x \in R_t}. \]
Training

Problem: general problem of determining partition with minimum empirical error is NP-hard.

Heuristics: greedy algorithm.

• for all $j \in [1, N], \theta \in \mathbb{R}$, $R^+(j, \theta) = \{x_i \in R: x_i[j] \geq \theta, i \in [1, m]\}$
 $R^-(j, \theta) = \{x_i \in R: x_i[j] < \theta, i \in [1, m]\}$.

Decision-Trees($S = ((x_1, y_1), \ldots, (x_m, y_m)))$

1. $P \leftarrow \{S\} \triangleright$ initial partition
2. for each region $R \in P$ such that $\text{Pred}(R)$ do
3. $(j, \theta) \leftarrow \text{argmin}_{(j, \theta)} \text{error}(R^-(j, \theta)) + \text{error}(R^+(j, \theta))$
4. $P \leftarrow P - R \cup \{R^-(j, \theta), R^+(j, \theta)\}$
5. return P
Splitting/Stopping Criteria

- **Problem**: larger trees overfit training sample.

- Conservative splitting:
 - split node only if loss reduced by some fixed value $\eta > 0$.
 - issue: seemingly bad split dominating useful splits.

- Grow-then-prune technique (CART):
 - grow very large tree, $\text{Pred}(R): |R| > |n_0|$.
 - prune tree based on: $F(T) = \widehat{\text{Loss}}(T) + \alpha |T|$, $\alpha \geq 0$ parameter determined by cross-validation.
Decision Tree Tools

Most commonly used tools for learning decision trees:

- **CART** (classification and regression tree) (Breiman et al., 1984).

- **C4.5** (Quinlan, 1986, 1993) and **C5.0** (RuleQuest Research) a commercial system.

Differences: minor between latest versions.
Approaches

- **Single classifier:**
 - SVM-type algorithm.
 - AdaBoost-type algorithm.
 - Decision trees.

- **Combination of binary classifiers:**
 - One-vs-all.
 - One-vs-one.
 - Error-correcting codes.
One-vs-All

- **Technique:**
 - for each class $l \in Y$ learn binary classifier $h_l = \text{sgn}(f_l)$.
 - combine binary classifiers via voting mechanism, typically majority vote: $h: x \mapsto \arg\max_{l \in Y} f_l(x)$.

- **Problem:** poor justification (in general).
 - calibration: classifier scores not comparable.
 - nevertheless: simple and frequently used in practice, computational advantages in some cases.
One-vs-One

Technique:

- for each pair \((l, l') \in Y, l \neq l'\) learn binary classifier \(h_{ll'} : X \rightarrow \{0, 1\}\).
- combine binary classifiers via majority vote:
 \[
 h(x) = \arg\max_{l \in Y} \left\{l : h_{ll'}(x) = 1\right\}.
 \]

Problem:

- computational: train \(k(k - 1)/2\) binary classifiers.
- overfitting: size of training sample could become small for a given pair.
Computational Comparison

<table>
<thead>
<tr>
<th></th>
<th>Training</th>
<th>Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-vs-all</td>
<td>$O(k B_{\text{train}}(m))$</td>
<td>$O(k B_{\text{test}})$</td>
</tr>
<tr>
<td></td>
<td>$O(k m^\alpha)$</td>
<td></td>
</tr>
</tbody>
</table>
| **One-vs-one** | $O(k^2 B_{\text{train}}(m/k))$ (on average) | $O(k^2 B_{\text{test}})$
| | $O(k^{2-\alpha} m^\alpha)$ | smaller N_{SV} per B |

Time complexity for SVMs, α less than 3.
Error-Correcting Code Approach

(Dietterich and Bakiri, 1995)

Technique:

- assign F-long binary code word to each class:
 \[M = [M_{lj}] \in \{0, 1\}^{[1,k]} \times [1,F]. \]

- learn binary classifier $f_j: X \rightarrow \{0, 1\}$ for each column. Example x in class l labeled with M_{lj}.

- classifier output:
 \[f(x) = (f_1(x), \ldots, f_F(x)) \]
 \[h: x \mapsto \arg \min_{l \in Y} d_{\text{Hamming}}(M_l, f(x)). \]
Illustration

8 classes, code-length: 6.

<table>
<thead>
<tr>
<th>classes</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[f_1(x)f_2(x)f_3(x)f_4(x)f_5(x)f_6(x) \]
\[\begin{array}{ccccccc}
0 & 1 & 1 & 0 & 1 & 1 \\
\end{array} \]

new example \(x \)
Error-Correcting Codes - Design

Main ideas:

- independent columns: otherwise no effective discrimination.
- distance between rows: if the minimal Hamming distance between rows is d, then the multi-class can correct $\left\lfloor \frac{d-1}{2} \right\rfloor$ errors.
- columns may correspond to features selected for the task.
- one-vs-all and one-vs-one (with ternary codes) are special cases.
Extensions

Matrix entries in \{-1, 0, +1\}:

- examples marked with 0 disregarded during training.
- one-vs-one becomes also a special case.

Margin loss L: function of $yf(x)$, e.g., hinge loss.

- Hamming loss:
 $$h(x) = \arg\min_{l \in \{1, \ldots, k\}} \sum_{j=1}^{F} \frac{1 - \text{sgn}(\mathbf{M}_{lj} f_j(x))}{2}.$$

- Margin loss:
 $$h(x) = \arg\min_{l \in \{1, \ldots, k\}} \sum_{j=1}^{F} L(\mathbf{M}_{lj} f_j(x)).$$
Ideas

- Continuous codes: real-valued matrix.
- Learn matrix code M.
- Similar optimization problems with other matrix norms.
- Kernel K used for similarity between matrix row and prediction vector.
Continuous Codes

(Crammer and Singer, 2000, 2002)

- **Optimization problem:** \((M_l \ lth \ row \ of \ M)\)

\[
\min_{M, \xi} \|M\|_2^2 + C \sum_{i=1}^{m} \xi_i
\]

subject to:
\[
K(f(x_i), M_{y_i}) \geq K(f(x_i), M_l) + 1 - \xi_i
\]

\((i, l) \in [1, m] \times [1, k].\)

- **Decision function:**

\[
h: x \mapsto \arg\max_{l \in \{1, \ldots, k\}} K(f(x), M_l).
\]
Applications

- One-vs-all approach is the most widely used.

- No clear empirical evidence of the superiority of other approaches (Rifkin and Klautau, 2004).
 - except perhaps on small data sets with relatively large error rate.

- Large structured multi-class problems: often treated as ranking problems (see ranking lecture).
References

References

