Foundations of Machine Learning
Multi-Class Classification

Mehryar Mohri
Courant Institute and Google Research
mohri@cims.nyu.edu
Motivation

- Real-world problems often have multiple classes: text, speech, image, biological sequences.

- Algorithms studied so far: designed for binary classification problems.

- How do we design multi-class classification algorithms?
 - can the algorithms used for binary classification be generalized to multi-class classification?
 - can we reduce multi-class classification to binary classification?
Multi-Class Classification Problem

- **Training data**: sample drawn i.i.d. from set X according to some distribution D,
 \[S = ((x_1, y_1), \ldots, (x_m, y_m)) \in X \times Y, \]
 - mono-label case: $\text{Card}(Y) = k$.
 - multi-label case: $Y = \{-1, +1\}^k$.

- **Problem**: find classifier $h : X \rightarrow Y$ in H with small generalization error,
 - mono-label case: $R_D(h) = \mathbb{E}_{x \sim D} [1_{h(x) \neq f(x)}]$.
 - multi-label case: $R_D(h) = \mathbb{E}_{x \sim D} \left[\frac{1}{k} \sum_{l=1}^{k} 1_{[h(x)]_k \neq [f(x)]_k} \right]$.
In most tasks considered, number of classes $k \leq 100$. For k large, problem often not treated as a multi-class classification problem (ranking or density estimation, e.g., automatic speech recognition).

Computational efficiency issues arise for larger ks.

In general, classes not balanced.
Multi-Class Classification - Margin

- **Hypothesis set** H:
 - functions $h : X \times Y \rightarrow \mathbb{R}$.
 - label returned: $x \mapsto \arg\max_{y \in Y} h(x, y)$.

- **Margin:**
 - $\rho_h(x, y) = h(x, y) - \max_{y' \neq y} h(x, y')$.
 - error: $1_{\rho_h(x, y) \leq 0} \leq \Phi_\rho(\rho_h(x, y))$.
 - empirical margin loss:
 $$\hat{R}_\rho(h) = \frac{1}{m} \sum_{i=1}^{m} \Phi_\rho(\rho_h(x, y)).$$
Multi-Class Margin Bound

Theorem: Let $H \subseteq \mathbb{R}^{X \times Y}$ with $Y = \{1, \ldots, k\}$. Fix $\rho > 0$. Then, for any $\delta > 0$, with probability at least $1 - \delta$, the following multi-class classification bound holds for all $h \in H$:

$$R(h) \leq \hat{R}_\rho(h) + \frac{4k}{\rho} \mathcal{R}_m(\Pi_1(H)) + \sqrt{\frac{\log \frac{1}{\delta}}{2m}},$$

with $\Pi_1(H) = \{x \mapsto h(x, y) : y \in Y, h \in H\}$.
Kernel Based Hypotheses

Hypothesis set $H_{K,p}$:

- Φ feature mapping associated to PDS kernel K.
- functions $(x, y) \mapsto w_y \cdot \Phi(x), y \in \{1, \ldots, k\}$.
- label returned: $x \mapsto \arg\max_{y \in \{1, \ldots, k\}} w_y \cdot \Phi(x)$.
- for any $p \geq 1$,

$$H_{K,p} = \{(x, y) \in X \times [1, k] \mapsto w_y \cdot \Phi(x): W = (w_1, \ldots, w_k)^\top, \|W\|_{H,p} \leq \Lambda\}.$$
Multi-Class Margin Bound - Kernels

Theorem: let $K : X \times X \to \mathbb{R}$ be a PDS kernel and let $\Phi : X \to \mathbb{H}$ be a feature mapping associated to K. Fix $\rho > 0$. Then, for any $\delta > 0$, with probability at least $1 - \delta$, the following multiclass bound holds for all $h \in H_{K,p}$:

$$R(h) \leq \hat{R}_\rho(h) + 4k \sqrt{\frac{r^2 \Lambda^2}{\rho^2 m}} + \sqrt{\frac{\log \frac{1}{\delta}}{2m}},$$

where $r^2 = \sup_{x \in X} K(x, x)$.

(MM et al. 2012)
Approaches

- Single classifier:
 - Multi-class SVMs.
 - AdaBoost.MH.
 - Conditional Maxent.
 - Decision trees.

- Combination of binary classifiers:
 - One-vs-all.
 - One-vs-one.
 - Error-correcting codes.
Multi-Class SVMs

(Weston and Watkins, 1999; Crammer and Singer, 2001)

- **Optimization problem:**

\[
\min_{w, \xi} \frac{1}{2} \sum_{l=1}^{k} \|w_l\|^2 + C \sum_{i=1}^{m} \xi_i
\]

subject to:

\[
w_{y_i} \cdot x_i + \delta_{y_i,l} \geq w_l \cdot x_i + 1 - \xi_i
\]

\((i, l) \in [1, m] \times Y.\)

- **Decision function:**

\[
h: x \mapsto \arg\max_{l \in Y} (w_l \cdot x).
\]
Notes

- Directly based on generalization bounds.

- Comparison with (Weston and Watkins, 1999): single slack variable per point, maximum of slack variables (penalty for worst class):

\[
\sum_{l=1}^{k} \xi_{il} \rightarrow \max_{l=1}^{k} \xi_{il}.
\]

- PDS kernel instead of inner product

- Optimization: complex constraints, \(mk\)-size problem.
 - specific solution based on decomposition into \(m\) disjoint sets of constraints (Crammer and Singer, 2001).
Dual Formulation

- **Optimization problem:** \(\alpha_i \) \(i \)th row of matrix \(\alpha \in \mathbb{R}^{m \times k} \)

\[
\max_{\alpha=[\alpha_{ij}]} \sum_{i=1}^{m} \alpha_i \cdot e_{y_i} - \frac{1}{2} \sum_{i=1}^{m} (\alpha_i \cdot \alpha_j)(\mathbf{x}_i \cdot \mathbf{x}_j)
\]

subject to: \(\forall i \in [1, m], (0 \leq \alpha_{iy_i} \leq C) \land (\forall j \neq y_i, \alpha_{ij} \leq 0) \land (\alpha_i \cdot 1 = 0) \).

- **Decision function:**

\[
h(x) = \arg\max_{l=1}^{k} \left(\sum_{i=1}^{m} \alpha_{il}(\mathbf{x}_i \cdot \mathbf{x}) \right).
\]
AdaBoost

Training data (multi-label case):

\[(x_1, y_1), \ldots, (x_m, y_m) \in X \times \{-1, 1\}^k.\]

Reduction to binary classification:

- each example leads to \(k\) binary examples:
 \[(x_i, y_i) \rightarrow ((x_i, 1), y_i[1]), \ldots, ((x_i, k), y_i[k]), i \in [1, m].\]
- apply AdaBoost to the resulting problem.
- choice of \(\alpha_t\).

Computational cost: \(mk\) distribution updates at each round.
AdaBoost.MH

\[H \subseteq \{-1, +1\}^k \times X \times Y. \]

AdaBoost.MH \((S = ((x_1, y_1), \ldots, (x_m, y_m)))\)

1. \textbf{for} \(i \leftarrow 1\) \textbf{to} \(m\) \textbf{do}
2. \hspace{1em} \textbf{for} \(l \leftarrow 1\) \textbf{to} \(k\) \textbf{do}
3. \hspace{2em} \(D_1(i, l) \leftarrow \frac{1}{mk}\)
4. \textbf{for} \(t \leftarrow 1\) \textbf{to} \(T\) \textbf{do}
5. \hspace{1em} \(h_t \leftarrow \text{base classifier in } H \text{ with small error } \epsilon_t = \text{Pr}_{D_t} [h_t(x_i, l) \neq y_i[l]]\)
6. \hspace{1em} \(\alpha_t \leftarrow \text{choose} \quad \triangleright \text{to minimize } Z_t\)
7. \hspace{1em} \(Z_t \leftarrow \sum_{i,l} D_t(i, l) \exp(-\alpha_t y_i[l] h_t(x_i, l))\)
8. \hspace{1em} \textbf{for} \(i \leftarrow 1\) \textbf{to} \(m\) \textbf{do}
9. \hspace{2em} \textbf{for} \(l \leftarrow 1\) \textbf{to} \(k\) \textbf{do}
10. \hspace{3em} \(D_{t+1}(i, l) \leftarrow \frac{D_t(i, l) \exp(-\alpha_t y_i[l] h_t(x_i, l))}{Z_t}\)
11. \(f_T \leftarrow \sum_{t=1}^T \alpha_t h_t\)
12. \textbf{return} \(h_T = \text{sgn}(f_T)\)
Bound on Empirical Error

- **Theorem:** The empirical error of the classifier output by AdaBoost.MH verifies:

 \[
 \hat{R}(h) \leq \prod_{t=1}^{T} Z_t.
 \]

- **Proof:** similar to the proof for AdaBoost.

- **Choice of \(\alpha_t \):**
 - for \(H \subseteq (\{-1, +1\}^k)^X \times Y \), as for AdaBoost, \(\alpha_t = \frac{1}{2} \log \frac{1-\epsilon_t}{\epsilon_t} \).
 - for \(H \subseteq ([-1, 1]^k)^X \times Y \), same choice: minimize upper bound.
 - other cases: numerical/approximation method.
Notes

- **Objective function:**
 \[
 F(\alpha) = \sum_{i=1}^{m} \sum_{l=1}^{k} e^{-y_i[l] f_n(x_i, l)} = \sum_{i=1}^{m} \sum_{l=1}^{k} e^{-y_i[l] \sum_{t=1}^{n} \alpha_t h_t(x_i, l)}.
 \]

- All comments and analysis given for AdaBoost apply here.

- **Alternative:** Adaboost.MR, which coincides with a special case of RankBoost (ranking lecture).
Decision Trees

\[
\begin{align*}
X_1 &< a_1 \\
X_1 &< a_2 \\
X_2 &< a_3 \\
X_2 &< a_4 \\
R_1 & \\
R_2 & \\
R_3 & \\
R_4 & \\
R_5 & \\
\end{align*}
\]
Different Types of Questions

- Decision trees
 - $X \in \{\text{blue, white, red}\}$: categorical questions.
 - $X \leq a$: continuous variables.

- Binary space partition (BSP) trees:
 - $\sum_{i=1}^{n} \alpha_i X_i \leq a$: partitioning with convex polyhedral regions.

- Sphere trees:
 - $||X - a_0|| \leq a$: partitioning with pieces of spheres.
Hypotheses

- In each region R_t,
 - **classification**: majority vote - ties broken arbitrarily,
 \[
 \hat{y}_t = \arg\max_{y \in Y} |\{x_i \in R_t : i \in [1, m], y_i = y\}|.
 \]
 - **regression**: average value,
 \[
 \hat{y}_t = \frac{1}{|S \cap R_t|} \sum_{\substack{x_i \in R_t \\ i \in [1, m]}} y_i.
 \]

- Form of hypotheses:
 \[
 h : x \mapsto \sum_t \hat{y}_t 1_{x \in R_t}.
 \]
Training

- **Problem:** general problem of determining partition with minimum empirical error is NP-hard.

- **Heuristics:** greedy algorithm.

 - for all $j \in [1, N], \theta \in \mathbb{R}$, $R^+(j, \theta) = \{ x_i \in R : x_i[j] \geq \theta, i \in [1, m] \}$

 $R^-(j, \theta) = \{ x_i \in R : x_i[j] < \theta, i \in [1, m] \}$.

```latex
\text{Decision-Trees}(S = ((x_1, y_1), \ldots, (x_m, y_m)))
```

1. $P \leftarrow \{S\} \triangleright \text{initial partition}$
2. for each region $R \in P$ such that $\text{Pred}(R)$ do
3. \hspace{1em} $(j, \theta) \leftarrow \text{argmin}_{(j,\theta)} \text{error}(R^-(j, \theta)) + \text{error}(R^+(j, \theta))$
4. \hspace{1em} $P \leftarrow P - R \cup \{R^-(j, \theta), R^+(j, \theta)\}$
5. return P

Mehryar Mohri - Foundations of Machine Learning
Splitting/Stopping Criteria

- **Problem:** larger trees overfit training sample.

- **Conservative splitting:**
 - split node only if loss reduced by some fixed value $\eta > 0$.
 - issue: seemingly bad split dominating useful splits.

- **Grow-then-prune technique (CART):**
 - grow very large tree, $\text{Pred}(R): |R| > |n_0|$.
 - prune tree based on: $F(T) = \widehat{\text{Loss}}(T) + \alpha |T|$, $\alpha \geq 0$ parameter determined by cross-validation.
Decision Tree Tools

Most commonly used tools for learning decision trees:

- **CART** (classification and regression tree) (Breiman et al., 1984).

- **C4.5** (Quinlan, 1986, 1993) and **C5.0** (RuleQuest Research) a commercial system.

Differences: minor between latest versions.
Approaches

- Single classifier:
 - SVM-type algorithm.
 - AdaBoost-type algorithm.
 - Conditional Maxent.
 - Decision trees.

- Combination of binary classifiers:
 - One-vs-all.
 - One-vs-one.
 - Error-correcting codes.
One-vs-All

- **Technique:**
 - for each class $l \in Y$ learn binary classifier $h_l = \text{sgn}(f_l)$.
 - combine binary classifiers via voting mechanism, typically majority vote: $h : x \mapsto \arg\max_{l \in Y} f_l(x)$.

- **Problem:** poor justification (in general).
 - calibration: classifier scores not comparable.
 - nevertheless: simple and frequently used in practice, computational advantages in some cases.
One-vs-One

Technique:

- for each pair \((l, l') \in Y, l \neq l'\) learn binary classifier \(h_{ll'} : X \rightarrow \{0, 1\}\).
- combine binary classifiers via majority vote:

\[
h(x) = \arg\max_{l' \in Y} \left| \{l : h_{ll'}(x) = 1\} \right|.
\]

Problem:

- computational: train \(k(k - 1)/2\) binary classifiers.
- overfitting: size of training sample could become small for a given pair.
Computational Comparison

<table>
<thead>
<tr>
<th></th>
<th>Training</th>
<th>Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-vs-all</td>
<td>$O(k B_{\text{train}}(m))$</td>
<td>$O(k B_{\text{test}})$</td>
</tr>
<tr>
<td></td>
<td>$O(k m^\alpha)$</td>
<td></td>
</tr>
<tr>
<td>One-vs-one</td>
<td>$O(k^2 B_{\text{train}}(m/k))$</td>
<td>$O(k^2 B_{\text{test}})$</td>
</tr>
<tr>
<td>(on average)</td>
<td>$O(k^{2-\alpha} m^\alpha)$</td>
<td>smaller N_{SV} per B</td>
</tr>
</tbody>
</table>

Time complexity for SVMs, α less than 3.
Error-Correcting Code Approach

(Dietterich and Bakiri, 1995)

- **Idea:**

 - **assign** \(F \)-long binary code word to each class:
 \[
 \mathbf{M} = [\mathbf{M}_{lj}] \in \{0, 1\}^{[1,k] \times [1,F]}.
 \]

 - **learn binary classifier** \(f_j : X \rightarrow \{0, 1\} \) for each column. Example \(x \) in class \(l \) labeled with \(\mathbf{M}_{lj} \).

 - **classifier output:**
 \[
 \left(f(x) = (f_1(x), \ldots, f_F(x)) \right),
 \]
 \[
 h : x \mapsto \arg \min_{l \in Y} d_{\text{Hamming}} \left(\mathbf{M}_l, f(x) \right).
 \]
Illustration

8 classes, code-length: 6.

<table>
<thead>
<tr>
<th>codes</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
f_1(x)f_2(x)f_3(x)f_4(x)f_5(x)f_6(x)\]

0 1 1 0 1 1

new example \(x\)

Mehryar Mohri - Foundations of Machine Learning
Main ideas:

- independent columns: otherwise no effective discrimination.
- distance between rows: if the minimal Hamming distance between rows is d, then the multi-class problem can correct $\left\lfloor \frac{d-1}{2} \right\rfloor$ errors.
- columns may correspond to features selected for the task.
- one-vs-all and one-vs-one (with ternary codes) are special cases.
Extensions

- Matrix entries in \([-1, 0, +1]\):
 - examples marked with 0 disregarded during training.
 - one-vs-one becomes also a special case.

- Margin loss L: function of $yf(x)$, e.g., hinge loss.
 - Hamming loss:
 $$h(x) = \arg\min_{l \in \{1, \ldots, k\}} \sum_{j=1}^{F} \frac{1 - \text{sgn}(M_{lj}f_j(x))}{2}. $$
 - Margin loss:
 $$h(x) = \arg\min_{l \in \{1, \ldots, k\}} \sum_{j=1}^{F} L(M_{lj}f_j(x)). $$

(Allwein et al., 2000)
Applications

- One-vs-all approach is the most widely used.
- No clear empirical evidence of the superiority of other approaches (Rifkin and Klautau, 2004).
 - except perhaps on small data sets with relatively large error rate.
- Large structured multi-class problems: often treated as ranking problems (see ranking lecture).
References

References

