

Mehryar Mohri
 Foundations of Machine Learning 2018
 Courant Institute of Mathematical Sciences
 Homework assignment 1
 Sep 18, 2018
 Due: Oct 01, 2018

A. Probability review

Let $h: X \rightarrow \{0, 1\}$ be a hypothesis and let S denote an i.i.d. sample of size m . For any $\epsilon > 0$, the following two-sided inequality holds:

$$\Pr_S(|\hat{R}_S(h) - R(h)| > \epsilon) \leq 2e^{-2m\epsilon^2}.$$

Show that the variance of $\hat{R}_S(h)$ satisfies $\text{var}[\hat{R}_S(h)] \leq \frac{\log(2e)}{2m}$. (*Hint:* use the identity $\text{E}[X^2] = \int_0^\infty \text{Pr}[X^2 > t]dt$.)

Solution: For any $u > 0$, we have

$$\begin{aligned} \text{var}[\hat{R}(h)] &= \text{E}[(\hat{R}(h) - R(h))^2] \\ &= \int_0^u \text{Pr}[(\hat{R}(h) - R(h))^2 > t]dt + \int_u^\infty \text{Pr}[(\hat{R}(h) - R(h))^2 > t]dt \\ &\leq u + \int_u^\infty 2e^{-2mt}dt \\ &= u + \frac{e^{-2mu}}{m} := f(u). \end{aligned}$$

The function $f(u)$ is a convex function of u , with its minimum value attained when

$$f'(u_0) = 0 \iff 1 - 2e^{-2mu_0} = 0 \iff u_0 = \frac{\log 2}{2m}.$$

Plug in u_0 to get $f(u_0) = \frac{\log(2e)}{2m}$. \square

B. PAC learning

1. Consider the concept class C formed by threshold functions on the real line, $C = \{[c, \infty) : \forall c \in \mathbb{R}\} \cup \{(-\infty, c] : \forall c \in \mathbb{R}\}$. Give a PAC-learning algorithm for C . The analysis is similar to that of the axis-aligned

rectangles given in class, but you should carefully present and justify your proof.

Solution: Let $S = \{(x_1, y_1), \dots, (x_m, y_m)\}$ denote the labeled sample of size m . Without loss of generality, assume that the true concept is $[c, \infty)$ for some unknown $c \in \mathbb{R}$. Define

$$\begin{aligned}\hat{l} &= \max\{x_i : (x_i, y_i) \in S, y_i = -1\}, \\ \hat{r} &= \min\{x_i : (x_i, y_i) \in S, y_i = 1\}.\end{aligned}$$

By definition, $\hat{l} \leq c \leq \hat{r}$.

The algorithm returns the concept $R_S = [\hat{c}, \infty)$ with $\hat{c} = (\hat{l} + \hat{r})/2$. The error region of R_S is the interval $[\hat{c}, c)$ when $\hat{c} < c$, and $[c, \hat{c})$ otherwise. In both cases, the error region is a subset of (\hat{l}, \hat{r}) . Therefore,

$$\begin{aligned}\Pr[R(R_S) > \epsilon] &\leq \Pr[R((\hat{l}, \hat{r})) > \epsilon] \\ &\leq (1 - \epsilon)^m \leq e^{-m\epsilon}.\end{aligned}$$

Setting δ to be greater than or equal to the right-hand side leads to $m \geq \frac{1}{\epsilon} \log(\frac{1}{\delta})$. \square

2. Give a PAC-learning algorithm for the concept class C_2 on \mathbb{R}^2 that is formed by intersections of axis-aligned half-spaces: C_2 consists of concepts of the following forms:

$$\begin{aligned}&\{(x, y) : x \geq c_x, y \geq c_y\}, \\ &\{(x, y) : x \geq c_x, y \leq c_y\}, \\ &\{(x, y) : x \leq c_x, y \geq c_y\}, \\ &\{(x, y) : x \leq c_x, y \leq c_y\},\end{aligned}$$

where $c_x, c_y \in \mathbb{R}$. You should carefully justify all steps of your proof.

Solution: The algorithm returns the tightest concept in C_2 containing points labeled with 1. The proof is similar to the proof of learning axis-aligned rectangles.