A. Probability tools

1. Let $f: (0, +\infty) \rightarrow \mathbb{R}$ be a function admitting an inverse f^{-1} and let X be a random variable. Show that if for any $t > 0$, $\Pr[X > t] \leq f(t)$, then, for any $\delta > 0$, with probability at least $1 - \delta$, $X \leq f^{-1}(\delta)$.

2. Let X be a discrete random variable taking non-negative integer values. Show that $\mathbb{E}[X] = \sum_{n \geq 1} \Pr[X \geq n]$ (hint: rewrite $\Pr[X = n]$ as $\Pr[X \geq n] - \Pr[X \geq n + 1]$).

B. Label bias

1. Let D be a distribution over \mathcal{X} and let $f: \mathcal{X} \times \{-1, +1\}$ be a labeling function. Suppose we wish to find a good approximation of the label bias of the distribution D, that is of p_+ defined by:

$$p_+ = \Pr_{x \sim D}[f(x) = +1].$$

Let S be a finite labeled sample of size m drawn i.i.d. according to D. Use S to derive an estimate \hat{p}_+ of p_+. Show that for any $\delta > 0$, with probability at least $1 - \delta$, $|p_+ - \hat{p}_+| \leq \sqrt{\frac{\log(2/\delta)}{2m}}$ (carefully justify all steps).

C. Learning in the presence of noise

1. In Lecture 2, we showed that the concept class of axis-aligned rectangles is PAC-learnable. Consider now the case where the training points received by the learner are subject to the following noise: points negatively labeled are unaffected by noise but the label of a positive training point is randomly flipped to negative with probability $\eta \in (0, \frac{1}{2})$. The exact value of the noise rate η is not known to the learner but an upper bound η' is supplied to him with $\eta \leq \eta' < 1/2$. Show that the algorithm described in class returning the tightest rectangle containing positive points can still PAC-learn axis-aligned
rectangles in the presence of this noise. To do so, you can proceed using the following steps:

(a) Using the notation of the lecture slides, assume that \(\Pr[R] > \epsilon \). Suppose that \(\text{error}(R') > \epsilon \). Give an upper bound on the probability that \(R' \) misses a region \(r_j, j \in [1, 4] \) in terms of \(\epsilon \) and \(\eta' \)?

(b) Use that to give an upper bound on \(\Pr[\text{error}(R') > \epsilon] \) in terms of \(\epsilon \) and \(\eta' \) and conclude by giving a sample complexity bound.

2. [Bonus question] In this section, we will seek a more general result. We consider a finite hypothesis set \(H \), assume that the target concept is in \(H \), and adopt the following noise model: the label of a training point received by the learner is randomly changed with probability \(\eta \in (0, \frac{1}{2}) \). The exact value of the noise rate \(\eta \) is not known to the learner but an upper bound \(\eta' \) is supplied to him with \(\eta \leq \eta' < 1/2 \).

(a) For any \(h \in H \), let \(d(h) \) denote the probability that the label of a training point received by the learner disagrees with the one given by \(h \). Let \(h^* \) be the target hypothesis, show that \(d(h^*) = \eta \).

(b) More generally, show that for any \(h \in H \), \(d(h) = \eta + (1-2\eta) \text{error}(h) \), where \(\text{error}(h) \) denotes the generalization error of \(h \).

(c) Fix \(\epsilon > 0 \) for this and all the following questions. Use the previous questions to show that if \(\text{error}(h) > \epsilon \), then \(d(h) - d(h^*) \geq \epsilon' \), where \(\epsilon' = \epsilon(1-2\eta') \).

(d) For any hypothesis \(h \in H \) and sample \(S \) of size \(m \), let \(\hat{d}(h) \) denote the fraction of the points in \(S \) whose labels disagree with those given by \(h \). We will consider the algorithm \(L \) which, after receiving \(S \), returns the hypothesis \(h_S \) with the smallest number of disagreements (thus \(\hat{d}(h_S) \) is minimal). To show PAC-learning for \(L \), we will show that for any \(h \), if \(\text{error}(h) > \epsilon \), then with high probability \(\hat{d}(h) \geq \hat{d}(h^*) \). First, show that for any \(\delta > 0 \), with probability at least \(1 - \delta / 2 \), for \(m \geq \frac{2}{\epsilon^2} \log \frac{2}{\delta} \), the following holds:

\[
\hat{d}(h^*) - d(h^*) \leq \epsilon' / 2
\]

(e) Second, show that for any \(\delta > 0 \), with probability at least \(1 - \delta / 2 \), for \(m \geq \frac{2}{\epsilon^2} (\log |H| + \log \frac{2}{\delta}) \), the following holds for all \(h \in H \):

\[
d(h) - \hat{d}(h) \leq \epsilon' / 2
\]
(f) Finally, show that for any $\delta > 0$, with probability at least $1 - \delta$, for $m \geq \frac{2}{\epsilon^2 (1 - 2\eta')^2} (\log |H| + \log \frac{2}{\delta})$, the following holds for all $h \in H$ with $\text{error}(h) > \epsilon$:

\[\hat{d}(h) - \hat{d}(h^*) \geq 0. \]

(hint: use $\hat{d}(h) - \hat{d}(h^*) = [\hat{d}(h) - d(h)] + [d(h) - d(h^*)] + [d(h^*) - \hat{d}(h^*)]$ and use previous questions to lower bound each of these three terms).