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A. VC-dimension of convex combinations

1. Let H be a family of functions mapping from an input space X to
{−1,+1} and let T be a positive integer. Give an upper bound on the
VC-dimension of the family of functions FT defined by

F =

{
sgn

(
T∑
t=1

αtht

)
: ht ∈ H,αt ≥ 0,

T∑
t=1

αt ≤ 1

}
.

(Hint : you can use Problem C. of (Foundations of Machine Learning,
HW2, 2014, http://www.cs.nyu.edu/~mohri/ml14/hw2.pdf and its
solution).

Solution: Following the hint, we can think of this family of functions as a one
hidden layer neural network, where the hidden layer is represented by the
functions ht ∈ H, and the top layer is a threshold function characterized by
(α1, . . . , αT ). Denote this class of threshold functions by ∆T . By problem
C1 from FML2014-HW2, we can bound the growth function of FT by:

ΠFT (m) ≤ Π∆T
(m) (ΠH(m))T .

By problem C3 from FML2014-HW2, the VC dimension of ∆T is at
most T , and we may further denote the VC dimension of H by d. Applying
Sauer’s lemma to the growth function yields:

Π∆T
(m) ≤

(em
T

)T
, ΠH(m) ≤

(em
d

)d
.

Thus, we have that

ΠFT (m) ≤
(em
T

)T (em
d

)Td
.

Finally, we may apply the hint in problem C2 from FML2014-HW2 with
m = max{4T log2(2e), 2Td log2(eT )} to see that(em

T

)T (em
d

)Td
< 24T log2(2e)+2Td log2(eT ),
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so that the VC Dimension of FT is bounded by:

2T (2 log2(2e) + d log2(eT )).

Note that a coarser but relatively simpler bound would be to write:(em
T

)T (em
d

)Td
< (em)T (d+1),

and to apply the hint in problem C2 from FML2014-HW2 with m = 2T (d+
1) log2(eT (d+ 1)). Notice that this is actually asymptotically optimal in T
and d up to log terms.

B. Growth function

1. A linearly separable labeling of a setX of vectors in Rd is a classification
of X into two sets X+ and X− with X+ = {x ∈ X : w · x > 0} and
X− = {x ∈ X : w · x < 0} for some w ∈ Rd.
Let X = {x1, . . . ,xm} be a subset of Rd.

(a) Let {X+, X−} be a dichotomy of X and let xm+1 ∈ Rd. Show
that {X+ ∪ {xm+1}, X−} and {X+, X− ∪ {xm+1}} are linearly
separable by a hyperplane going through the origin if and only
if {X+, X−} is linearly separable by a hyperplane going through
the origin and xm+1.

Solution: {X+ ∪ {xm+1}, X−} and {X+, X− ∪ {xm+1}} are lin-
early separable by a hyperplane going through the origin if and
only if there exists w1 ∈ Rd such that

∀x ∈ X+,w1 · x > 0 ∀x ∈ X−,w1 · x < 0, and w1 · xm+1 > 0
(1)

and there exists w2 ∈ Rd such that

∀x ∈ X+,w2 · x > 0 ∀x ∈ X−,w2 · x < 0, and w2 · xm+1 < 0.
(2)

For any w1,w2, the function f : (t 7→ tw1 + (1− t)w2) · xm+1 is
continuous over [0, 1]. (1) and (2) hold iff f(0) < 0 and f(1) > 0,
that is iff there exists w = t0w1 + (1− t0)w2 linearly separating
{X+, X−} and such at w · xm+1 = 0. ut
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(b) Let X = {x1, . . . ,xm} be a subset of Rd such that any k-element
subset of X with k ≤ d is linearly independent. Then, the number
of linearly separable labelings of X is C(m, d) = 2

∑d−1
k=0

(
m−1
k

)
.

(Hint : prove by induction that C(m+1, d) = C(m, d)+C(m, d−
1).

Solution:

Repeating the formula, we obtain C(m, d) =
∑m−1

k=0

(
m−1
k

)
C(1, d−

k). Since, C(1, n) = 2 if n ≥ 1 and C(1, n) = 0 otherwise, the
result follows. ut

(c) Let f1, . . . , fp be p functions mapping Rd to R. Define F as
the family of classifiers based on linear combinations of these
functions:

F =

{
x 7→ sgn

( p∑
k=1

akfk(x)

)
: a1, . . . , ap ∈ R

}
.

Define Ψ by Ψ(x) = (f1(x), . . . , fp(x)). Assume that there exists
x1, . . . , xm ∈ Rd such that every p-subset of {Ψ(x1), . . . ,Ψ(xm)}
is linearly independent. Then, show that

ΠF (m) = 2

p−1∑
i=0

(
m− 1

i

)
.

Solution:

This is a direct application of the result of the previous question.
ut

C. Support Vector Machines

1. Download and install the libsvm software library from:

http://www.csie.ntu.edu.tw/~cjlin/libsvm/ ,

and briefly consult the documentation to become more familiar with
the tools.

2. Consider the splice data set

http://www.cs.toronto.edu/~delve/data/splice/desc.html.
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Download the already formatted training and test files of a noisy ver-
sion of that dataset from

http://www.cs.nyu.edu/~mohri/ml15/splice_noise_train.txt

http://www.cs.nyu.edu/~mohri/ml15/splice_noise_test.txt.

Use the libsvm scaling tool to scale the features of all the data. The
scaling parameters should be computed only on the training data and
then applied to the test data.

3. Consider the corresponding binary classification which consists of dis-
tinguishing two types of splice junctions in DNA sequences using about
60 features. Use SVMs combined with polynomial kernels to tackle this
problem.

To do that, randomly split the training data into ten equal-sized dis-
joint sets. For each value of the polynomial degree, d = 1, 3, 5, plot the
average cross-validation error plus or minus one standard deviation as
a function of C (let other parameters of polynomial kernels in libsvm

be equal to their default values), varying C in powers of 5, starting
from a small value C = 5−k to C = 5k, for some value of k. k should be
chosen so that you see a significant variation in training error, starting
from a very high training error to a low training error. Expect longer
training times with libsvm as the value of C increases.

Solution:

Figure 1 shows the average cross-validation performance as a function
of the regularization parameter C. Note that the algorithm starts to
exhibit some over-fitting as C becomes very large. The performance
for several choices of d and C are essentially indistinguishable; one
suitable choice of optimal parameters is C∗ = 51 and d∗ = 3. ut

4. Let (C∗, d∗) be the best pair found previously. Fix C to be C∗. Plot the
ten-fold cross-validation error and the test errors for the hypotheses
obtained as a function of d. Plot the average number of support vectors
obtained as a function of d. How many of the support vectors lie on
the marginal hyperplanes? Plot the soft margin of the solution as a
function of d.

Solution:

The first plot in Figure 4 compares CV and test errors for C∗ as a
function of d. As expected test error is slightly higher than CV error.
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Figure 1: Average error (red) according to 10-fold cross-validation, with
error-bars (green and blue) indicating one standard deviation. Left, middle
and right panels correspond to d = 1, 3, 5 respectively. On the x-axis we
have log5C.

The second plot shows that the total number of support vectors and
the number of support vectors on the marginal hyperplanes. The last
plot shows the margin as a function of d. ut

5. Now, combine SVMs with Gaussian kernels to tackle the same task.
Use cross-validation as before to determine the best value of C and σ,
varying C in powers of 5, and σ in powers of 2 for a reasonable range
so that you see a significant variation in training error, as before. Fix
C and σ to the best values found via cross-validation. How does the
test error of the solution compare to the best result obtained using
polynomial kernels? What is the value of the soft margin?

Solution:

Figure 3 shows the average cross-validation performance as a function
of the regularization parameter C and g = 1/σ2. C∗ = 1 and g∗ =
0.03125. Figure 4 shows the test and validation error as a function of
degree (top panel), the number of total and marginal support vectors
(second panel) and the margin as function of g.

Note that the best test error for polynomial kernels is around 23% and
with Gaussian kernels it is around 19%. ut

6. Here, use as a kernel the sum of the best polynomial kernel (degree
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d∗) and the Gaussian kernel with the best parameter σ you found in
the previous question. Use cross-validation as before to determine the
best value of C. How does the test error of the solution compare to
the best result obtained in the previous questions?

Solution: There are multiply ways to solve this problem. If you are
using libsvm in MATLAB, then you can simply precompute the kernel
matrix and use it to solve the problem. Otherwise, you can directly
modify libsvm code (see libsvm FAQ on how to do this). In our case,
we use Gaussian kernel with g = 0.03125 and polynomial kernel with
d = 3. The test error is around 21% which is slightly worse than for
Gaussian kernels, but better than for polynomial kernels.

D. Kernels

Show that the following kernels are PDS.

1. Let n be a positive integer. K is defined by K(x,y) =
∑N

i=1 cosn(x2
i −

y2
i ) for all (x,y) ∈ RN × RN .

Solution: Since the product and sum of PDS kernels is PDS, it suffices
to show that k : x 7→ cos(x2 − y2) is PDS over R × R. This is clear
since

k(x, y) = cos(x2) cos(y2) + sin(x2) sin(y2) = Φ(x) · Φ(y),

with

Φ(x) =

[
cos(x2)
sin(x2)

]
.

ut

2. Let σ be a positive real number. K is defined by K(x, y) = e−
‖x−y‖
σ for

all (x,y) ∈ RN ×RN (Hint : you could show that K is the normalized
kernel of a kernel K ′ and show that K ′ is PDS using the following

equality: ‖x− y‖ = 1
2Γ( 1

2
)

∫ +∞
0

1−e−t‖x−y‖2

t
3
2

dt valid for all x,y).

Solution: It suffices to show that K is the normalized kernel associated
to the kernel K ′ defined by

∀(x,y) ∈ RN × RN ,K ′(x,y) = eφ(x,y)
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where φ(x,y) = 1
σ [‖x‖+ ‖y‖− ‖x−y‖], and to show that K ′ is PDS.

For the first part, observe that

K ′(x,y)√
K ′(x,x)K ′(y,y)

= eφ(x,y)− 1
2
φ(x,x)− 1

2
φ(y,y) = e−

‖x−y‖
σ .

To show that K ′ is PDS, it suffices to show that φ is PDS, since
composition with a power series with non-negative coefficients (here
exp) preserve the PDS property. Now, for any c1, . . . , cn ∈ R, let
c0 = −

∑n
i=1 ci, then, we can write

n∑
i,j=1

cicjφ(xi,xj) =
1

σ

n∑
i,j=1

cicj [‖xi‖+ ‖xj‖ − ‖xi − xj‖]

=
1

σ

[
−

n∑
i=1

c0ci‖xi‖+−
n∑
i=1

c0cj‖xj‖ −
n∑

i,j=1

cicj‖xi − xj‖
]

= − 1

σ

n∑
i,j=0

cicj‖xi − xj‖,

with x0 = 0. Now, for any z ∈ R, the following equality holds:

z
1
2 =

1

2Γ(1
2)

∫ +∞

0

1− e−tz

t
3
2

dt.

Thus,

− 1

σ

n∑
i,j=0

cicj‖xi − xj‖ =
1

2Γ(1
2)

∫ +∞

0
− 1

σ

n∑
i,j=0

cicj
1− e−t‖xi−xj‖2

t
3
2

dt

=
1

2Γ(1
2)

∫ +∞

0

1

σ

∑n
i,j=0 cicje

−t‖xi−xj‖2

t
3
2

dt.

Since a Gaussian kernel is PDS, the inequality
∑n

i,j=0 cicje
−t‖xi−xj‖2 ≥

0 holds and the right-hand side is non-negative. Thus, the inequality
− 1
σ

∑n
i,j=0 cicj‖xi − xj‖ ≥ 0 holds, which shows that φ is PDS. ut

Alternatively, one can also apply the theorem on page 43 of the lec-
ture slides on kernel methods to reduce the problem to showing that
the norm G(x, y) = ‖x − y‖ is a NDS function. This can be shown
through a direct application of the definition of NDS together with the
representation of the norm given in the hint.
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Figure 2: The test and validation error as a function of d (top panel), the
number of total and marginal support vectors (second panel) and the margin
as function of d.
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Figure 3: Average error (red) according to 10-fold cross-validation, with
error-bars (green and blue) indicating one standard deviation. Top
left, top right, bottom left and bottom right correspond to g =
0.015625, 0.03125, 0.0625, 0.125 respectively. Note that g = 1/2σ2. On the
x-axis we have log5C.
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Figure 4: The test and validation error as a function of degree (top panel),
the number of total and marginal support vectors (second panel) and the
margin as function of g.
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