A. Boosting-type Algorithm

1. Show that for all $u \in \mathbb{R}$ and integer $p > 1$, $1_{u,0} \leq \Phi_p(-u)$ where $\Phi_p(u) = \max((1 + u)^p, 0)$. Show that Φ_p is convex and differentiable.

2. Use Φ_p to derive a boosting-type algorithm using coordinate descent. You should give a full description of your algorithm, including the pseudocode, details for the choice of the step and direction, as well as a generalization bound.

B. L_2-Regularized Maxent

This problem studies L_2-regularized Maxent. We will use the notation introduced in class and will denote by J_S the dual objective function minimized given a sample S:

$$J_S(w) = \frac{\lambda}{2} \|w\|^2 + \mathbb{E}_{x \sim S} [- \log p_w(x)],$$

where $\lambda > 0$ is a regularization parameter. We will assume that the feature vector is bounded: $\|\Phi(x)\|_2 \leq r$ for all $x \in \mathcal{X}$, for some $r > 0$.

1. Use McDiarmid’s inequality to prove that for any $\delta > 0$, with probability at least $1 - \delta$, the following inequality holds:

$$\left\| \mathbb{E}_{x \sim \mathcal{D}}[\Phi(x)] - \mathbb{E}_{x \sim S}[\Phi(x)] \right\|_2 \leq \sqrt{\frac{2r^2}{m} \left(1 + \sqrt{\log \frac{1}{\delta}} \right)}.$$

2. Let \tilde{w} be the L_2-regularized maxent solution for a sample S and w_D the solution for an infinite sample:

$$\tilde{w} = \arg\min_{w \in \mathbb{R}^N} J_S(w) \quad \text{and} \quad w_D = \arg\min_{w \in \mathbb{R}^N} J_D(w).$$
where \(J_D(w) = \frac{\lambda}{2} \|w\|_2^2 + E_{x \sim D} \left[- \log \hat{p}_w(x) \right] \). Use the definition of \(\hat{w} \) and \(w_D \) as minimizers (use gradients) to prove that the following inequality holds:

\[
\| \hat{w} - w_D \|_2 \leq \frac{\left\| E_{x \sim S}[\Phi(x)] - E_{x \sim D}[\Phi(x)] \right\|_2}{\lambda}.
\]

3. For any \(w \) and any distribution \(Q \) define \(L_Q(w) \) by \(L_Q(w) = E_{x \sim Q}[-\log \hat{p}_w(x)] \). Show that

\[
L_D(\hat{w}) - L_D(w_D) \leq (\hat{w} - w_D) \left[\frac{\lambda}{2} \|w_D\|_2^2 - \frac{\lambda}{2} \|\hat{w}\|_2^2 \right].
\]

4. Use that to show that the following inequality holds for any \(w \):

\[
L_D(\hat{w}) \leq \frac{1}{\lambda} \left\| E_{x \sim S}[\Phi(x)] - E_{x \sim D}[\Phi(x)] \right\|_2^2 + L_D(w) + \frac{\lambda}{2} \|w\|_2^2.
\]

5. Conclude by proving that for any \(\delta > 0 \), with probability at least \(1 - \delta \), the following inequality holds:

\[
L_D(\hat{w}) \leq \inf_{w \in \mathbb{R}^N} L_D(w) + \frac{\lambda}{2} \|w\|_2^2 + \frac{2 \sigma^2}{\lambda m} \left(1 + \sqrt{\log \frac{1}{\delta}} \right)^2.
\]

C. Randomized Halving

In class, we showed that, in the realizable scenario (at least one expert is always correct), the number of mistakes made by Halving is upper bounded by \(\log_2 N \). Here, we consider for the same realizable scenario a randomized version of Having defined as follows.

As for Halving, let \(H_t \) denote the set of remaining experts at the beginning of round \(t \), with \(H_1 = H \) the full set of \(N \) experts. At each round, let \(r_t \) be the fraction of experts in \(H_t \) predicting 1. Then, the prediction \(\hat{y}_t \) made by the algorithm is 1 with probability

\[
p_t = \left[\frac{1}{2} \log_2 \frac{1}{1 - r_t} \right]_{1 \leq r_t \leq \frac{3}{4}} + \left[1 \right]_{r_t > \frac{3}{4}},
\]

0 with probability \(1 - p_t \). The true label \(y_t \) is then received and \(H_{t+1} \) is derived from \(H_t \) by removing all experts who made a mistake.

1. Write the pseudocode of the algorithm.
2. Define the potential function $\Phi_t = \log_2 |H_t|$. Let $\mu_t = 1_{y_t \neq \tilde{y}_t}$, prove that for all $t \geq 1$, $E[\mu_t] \leq \frac{\Phi_t - \Phi_{t+1}}{2}$.

3. Show that the expected number of mistakes made by randomized Halving is at most $\frac{1}{2} \log_2 N$.

4. (Bonus question) Prove that no randomized algorithm makes fewer than $\lfloor \frac{1}{2} \log_2 N \rfloor$ mistakes, in expectation.