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A. Kernels

1. Show that the kernel K defined by

∀(x, y) ∈ RN × RN , K(x, y) =
1

1 + ‖x−y‖2
σ2

, (1)

where σ > 0 is a parameter, is PDS (hint : the function x 7→
∫ +∞
0 e−sxe−sds

defined for all x ≥ 0 could be useful for the proof).

Solution: For x ≥ 0, the integral
∫ +∞
0 e−sxe−sds is well defined and∫ +∞

0
e−sxe−sds =

∫ +∞

0
e−s(1+x)ds =

[
−e
−s(1+x)

1 + x

]+∞
0

=
1

1 + x
. (2)

Since the Gaussian kernel, (x, y) 7→ e−
‖x−y‖2

σ2 is PDS for any σ 6= 0,

the kernel (x, y) 7→
∫ +∞
0 e−

s‖x−y‖2

σ2 e−sds is also PDS since for any
x1, . . . , xm in RN and c1, . . . , cm in R,

m∑
i,j=1

cicje
−
s‖xi−xj‖

2

σ2 ≥ 0⇒
∫ +∞

0

m∑
i,j=1

cicje
−
s‖xi−xj‖

2

σ2 e−sds ≥ 0. (3)

By (2),
∫ +∞
0 e−

s‖x−y‖2

σ2 e−sds = 1

1+
‖x−y‖2
σ2

for all x, y in RN , which con-

cludes the proof. ut

2. Show that the kernel K defined by

∀(x, y) ∈ RN × RN , K(x, y) = exp

(∑N
i=1 min(|xi|, |yi|)

σ2

)
, (4)

where σ > 0 is a parameter, is PDS (hint : the function (x0, y0) 7→∫ +∞
0 1t∈[0,|x0|]1t∈[0,|y0|]dt defined over R × R could be useful for the

proof).
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Solution: Observe that for all x, y ∈ R,∫ +∞

0
1t∈[0,|x|]1t∈[0,|y|]dt = min{|x|, |y|}. (5)

Thus, (x, y) 7→ min(|x|, |y|) is a PDS kernel over R × R since for any
x1, . . . , xm in RN and c1, . . . , cm in R,

m∑
i,j=1

cicj min{|xi|, |xj |}

=

∫ +∞

0

m∑
i,j=1

cicj

N∑
k=1

1t∈[0,|xi|]1t∈[0,|xj |]dt

=

∫ +∞

0

∥∥∥∥∥
[ c11t∈[0,|x1|]

...
cm1t∈[0,|xm|]

]∥∥∥∥∥
2

dt ≥ 0.

Thus, (x, y) 7→
∑N

i=1 min(|xi|, |yi|) is a PDS kernel over RN × RN as

a sum of PDS kernels. Its composition with x 7→ ε
x
σ2 with admits a

power series with an infinite radius of convergence and non-negative
coefficients is thus also PDS, which concludes the proof. ut

B. Support Vector Machines

1. Download and install the libsvm software library from:

http://www.csie.ntu.edu.tw/~cjlin/libsvm/ ,

and briefly consult the documentation to become more familiar with
the tools.

2. Consider the splice data set

http://www.cs.toronto.edu/~delve/data/splice/desc.html.

Download the already formatted training and test files of a noisy ver-
sion of that dataset from

http://www.cs.nyu.edu/~mohri/ml14/splice_noise_train.txt

http://www.cs.nyu.edu/~mohri/ml14/splice_noise_test.txt.
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Use the libsvm scaling tool to scale the features of all the data. The
scaling parameters should be computed only on the training data and
then applied to the test data.

3. Consider the corresponding binary classification which consists of dis-
tinguishing two types of splice junctions in DNA sequences using about
60 features. Use SVMs combined with polynomial kernels to tackle this
problem.

To do that, randomly split the training data into ten equal-sized dis-
joint sets. For each value of the polynomial degree, d = 1, 2, 3, 4, plot
the average cross-validation error plus or minus one standard devia-
tion as a function of C (let other parameters of polynomial kernels
in libsvm be equal to their default values), varying C in powers of 5,
starting from a small value C = 5−k to C = 5k, for some value of k.
k should be chosen so that you see a significant variation in training
error, starting from a very high training error to a low training error.
Expect longer training times with libsvm as the value of C increases.

Solution:

Figure 1 shows the average cross-validation performance as a function
of the regularization parameter C. Note that the algorithm starts to
exhibit some over-fitting as C becomes very large. The performance
for several choices of d and C are essentially indistinguishable; one
suitable choice of optimal parameters is C∗ = 51 and d∗ = 3. ut

4. Let (C∗, d∗) be the best pair found previously. Fix C to be C∗. Plot the
ten-fold cross-validation error and the test errors for the hypotheses
obtained as a function of d. Plot the average number of support vectors
obtained as a function of d. How many of the support vectors lie on
the marginal hyperplanes? Plot the soft margin of the solution as a
function of d.

Solution:

The first plot in Figure 4 compares CV and test errors for C∗ as a
function of g. As expected test error is slightly higher than CV error.

The second plot shows that the total number of support vectors and
the number of support vectors on the marginal hyperplanes. The last
plot shows the margin as a function of g. ut
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Figure 1: Average error (red) according to 10-fold cross-validation, with
error-bars (green and blue) indicating one standard deviation. Top left, top
right, bottom left and bottom right correspond to d = 1, 2, 3, 4 respectively.
On the x-axis we have log5C.

5. Now, combine SVMs with Gaussian kernels to tackle the same task.
Use cross-validation as before to determine the best value of C and σ,
varying C in powers of 5, and σ in powers of 2 for a reasonable range
so that you see a significant variation in training error, as before. Fix
C and σ to the best values found via cross-validation. How does the
test error of the solution compare to the best result obtained using
polynomial kernels? What is the value of the soft margin?

Solution:

Figure 3 shows the average cross-validation performance as a function
of the regularization parameter C. C∗ = 1 and g∗ = 0.05. ut

C. Boosting

As discussed in class, AdaBoost can be viewed as coordinate descent applied
to an exponential objective function. Here, we consider an alternative en-
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semble method algorithm, HingeBoost, that consists of applying coordinate
descent to an objective function based on the hinge loss. Using the same
notation as in class, consider the function F defined for all α ∈ RN by

F (α) =

m∑
i=1

max

0, 1− yi
N∑
j=1

αjhj(xi)

 , (6)

where the hjs are base classifiers belonging to a hypothesis set H of functions
taking values −1 or +1.

1. Show that F is convex and admits a right- and left-derivative along
any direction.

Solution:

Since the hinge loss is convex, its composition with affine function of
α is also convex and F is convex as as sum of convex functions.

For the existence of one-sided directional derivatives, one can use the
fact that any convex function has one-sided directional derivatives or
alternatively, that our specific function is the sum of piecewise affine
functions, which are also known to have one-sided directional deriva-
tives (think of one-dimensional hinge loss).

ut

2. For any j ∈ [1, N ], let ej denote the direction corresponding to the
base hypothesis hj . Let αt denote the vector of coefficients αt,j , j ∈
[1, N ] obtained after t ≥ 0 iterations of coordinate descent and ft =∑N

j=1 αt,jhj the predictor obtained after t iterations.

Give the expression of the right-derivative F ′+(αt−1, ej) and the left-
derivative F ′−(αt−1, ej) after t− 1 iterations in terms of ft−1.

Solution:

Distinguishing different cases depending on the value of yift−1(xi) = 1,
it is straightforward to derive the following expressions for all j ∈
[1, N ]:

F ′+(αt−1, ej) =

m∑
i=1

−yihj(xi)[1yift−1(xi)<1 + 1(yihj(xi)<0)∧(yift−1(xi)=1)]

F ′−(αt−1, ej) =
m∑
i=1

−yihj(xi)[1yift−1(xi)<1 + 1(yihj(xi)>0)∧(yift−1(xi)=1)].
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The key here is that when yift−1(xi) 6= 1, each term in the sum will be
either 0 or the affine function independent of yihj(xi). On the other
hand, when yift−1(xi) = 1, the sign of yihj(xi) determines whether the
finite differences will extend into the 0 portion of the affine portion of
the term. ut

3. For any j ∈ [1, N ], define the maximum directional derivative δF (αt−1, ej)
at αt−1 as follows:

δF (αt−1, ej) =
0 if F ′−(αt−1, ej) ≤ 0 ≤ F ′+(αt−1, ej)

F ′+(αt−1, ej) if F ′−(αt−1, ej) ≤ F ′+(αt−1, ej) ≤ 0

F ′−(αt−1, ej) if 0 ≤ F ′−(αt−1, ej) ≤ F ′+(αt−1, ej).

The direction ej considered by the coordinate descent considered here
is the one maximizing |δF (αt−1, ej)|. Once the best direction j is
selected, the step η can be determined by minimizing F (αt−1 + ηej)
using a grid search. Give the pseudocode of HingeBoost.

Solution: The pseudocode of the HingeBoost algorithm is given in
Figure 5. ut

4. Bonus question: implement HingeBoost and AdaBoost using as base
classifiers boosting stumps and compare their performance on the data
set of Problem B. The number of rounds of boosting T can be deter-
mined via cross-validation varying T in powers of 10. Report the test
errors of each algorithm and compare them with those obtained for
SVMs in problem B.

Solution: The test errors of each algorithm should be approximately:

• SVM with Gaussian kernel: 18%

• SVM with Polynomial kernel: 20%

• AdaBoost: 17%

• HingeBoost: 19%
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Figure 2: The test and validation error as a function of g (top panel), the
number of total and marginal support vectors (second panel) and the margin
as function of g.
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Figure 3: Average error (red) according to 10-fold cross-validation, with
error-bars (green and blue) indicating one standard deviation. Top left,
top right, bottom left and bottom right correspond to g = 0.05, 0.5, 1, 2
respectively. Note that g = 1/2σ2. On the x-axis we have log5C.
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Figure 4: The test and validation error as a function of degree (top panel),
the number of total and marginal support vectors (second panel) and the
margin as function of d.
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HingeBoost(S = ((x1, y1), . . . , (xm, ym)))

1 f ← 0
2 for j ← 1 to N do
3 r ←

∑m
i=1−yihj(xi)[1yif(xi)<1 + 1(yihj(xi)<0)∧(yif(xi)=1)]

4 l←
∑m

i=1−yihj(xi)[1yif(xi)<1 + 1(yihj(xi)>0)∧(yif(xi)=1)]

5 if (l ≤ 0) ∧ (r ≥ 0) then
6 d[j]← 0
7 elseif (l ≤ r) then
8 d[j]← r
9 else d[j]← l

10 for t← 1 to T do
11 k ← argmin

j∈[1,N ]
|d[j]|

12 η ← argminη≥0G(f + ηhk) . line search

13 f ← f + ηhk
14 return f

Figure 5: Pseudocode of the HingeBoost algorithm. The function G is
defined for any f by G(f) =

∑m
i=1 max(0, f(xi)).
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