Mehryar Mohri

Foundations of Machine Learning 2014
Courant Institute of Mathematical Sciences
Homework assignment 3

October 28, 2014

Due: November 14, 2014

A. Kernels

1. Show that the kernel K defined by
1
V(z,y) € RY xR, K(z,y) = =R (1)
1+ =

o2

where o > 0is a parameter, is PDS (hint: the function z — f0+oo e e %ds
defined for all > 0 could be useful for the proof).

Solution: For x > 0, the integral f0+oo e *e~%ds is well defined and

“+o0 —+o0
/ e Te fds = / e s(142) gg —
0 0

_llz—y)?

Since the Gaussian kernel, (z,y) — e~ <2 is PDS for any o # 0,

efs(lJr:L") oo

1+
0

too —slz—ul?

the kernel (z,y) + [,/ e ¢* e %ds is also PDS since for any
Z1,...,Zm in RY and ¢1,...,¢p in R,
m _sllzi—=5012 +oo N slleg—ay?
Z cicje o2 >0= / Z cicje 2 e %ds>0. (3)
ij=1 0 ij=1
too _slz—ul® 1 . N)
By (2), J, e 2 e fds= — .= for all z,y in R™, which con-
1+ *;2
cludes the proof. O

2. Show that the kernel K defined by

o2

V(z,y) € RY x RN, K(z,y) = exp (ZZN1 min(|z;], |?/z|)> ’)

where o > 0 is a parameter, is PDS (hint: the function (zg,y0) —
f0+°° Lic(0,z0[] 1tc(o,jyo[jdt defined over R x R could be useful for the
proof).

Solution: Observe that for all z,y € R,

+o00
| tetosantietn et = mindlal. ol 5)
Thus, (z,y) — min(|z|, |y|) is a PDS kernel over R x R since for any
z1,...,Tm in RV and ¢1,...,¢p in R,
m
> cicymin{|al, |}
ij—1

+o0 M N

- /0 Z CiCy Z Liefo i) Lee[o,)a; 4

ij=1 k=1
/+oo [c1liefo,aq]] ‘ 2
0 Cm1f€i0a|1nt|]
Thus, (z,y) — sz\il min(|z;], |yi|) is a PDS kernel over RY x RY as
a sum of PDS kernels. Its composition with x — €+ with admits a

power series with an infinite radius of convergence and non-negative
coeflicients is thus also PDS, which concludes the proof. O

dt > 0.

B. Support Vector Machines

1. Download and install the 1ibsvm software library from:
http://www.csie.ntu.edu.tw/"cjlin/libsvm/ ,

and briefly consult the documentation to become more familiar with
the tools.

2. Consider the splice data set
http://www.cs.toronto.edu/~delve/data/splice/desc.html.

Download the already formatted training and test files of a noisy ver-
sion of that dataset from

http://www.cs.nyu.edu/~mohri/ml14/splice_noise_train.txt
http://www.cs.nyu.edu/~mohri/ml14/splice_noise_test.txt.

Use the 1ibsvm scaling tool to scale the features of all the data. The
scaling parameters should be computed only on the training data and
then applied to the test data.

. Consider the corresponding binary classification which consists of dis-
tinguishing two types of splice junctions in DNA sequences using about
60 features. Use SVMs combined with polynomial kernels to tackle this
problem.

To do that, randomly split the training data into ten equal-sized dis-
joint sets. For each value of the polynomial degree, d = 1,2, 3,4, plot
the average cross-validation error plus or minus one standard devia-
tion as a function of C' (let other parameters of polynomial kernels
in libsvm be equal to their default values), varying C' in powers of 5,
starting from a small value C' = 5% to C' = 5*, for some value of k.
k should be chosen so that you see a significant variation in training
error, starting from a very high training error to a low training error.
Expect longer training times with libsvm as the value of C increases.

Solution:

Figure 1 shows the average cross-validation performance as a function
of the regularization parameter C. Note that the algorithm starts to
exhibit some over-fitting as C becomes very large. The performance
for several choices of d and C are essentially indistinguishable; one
suitable choice of optimal parameters is C* = 5! and d* = 3. O

. Let (C*, d*) be the best pair found previously. Fix C to be C*. Plot the
ten-fold cross-validation error and the test errors for the hypotheses
obtained as a function of d. Plot the average number of support vectors
obtained as a function of d. How many of the support vectors lie on
the marginal hyperplanes? Plot the soft margin of the solution as a
function of d.

Solution:

The first plot in Figure 4 compares CV and test errors for C* as a
function of g. As expected test error is slightly higher than CV error.

The second plot shows that the total number of support vectors and
the number of support vectors on the marginal hyperplanes. The last
plot shows the margin as a function of g. O

55—————————————— 55
s50f 50f
45} 45f
401 40t
35f 35
30t 30f
25t 25}
201 20f
15! 15!

55 T T T T T T T 55
50F 50F
451 45}
401 40
35F 351
30F 301
251 25F
20 201

. 5
15—4 -3 -2 -1 0 1 2 3 4 1J—4 -3 -2 -1 0 1 2 3 4

Figure 1: Average error (red) according to 10-fold cross-validation, with
error-bars (green and blue) indicating one standard deviation. Top left, top
right, bottom left and bottom right correspond to d = 1,2, 3, 4 respectively.
On the z-axis we have logs C.

5. Now, combine SVMs with Gaussian kernels to tackle the same task.
Use cross-validation as before to determine the best value of C' and o,
varying C' in powers of 5, and ¢ in powers of 2 for a reasonable range
so that you see a significant variation in training error, as before. Fix
C and o to the best values found via cross-validation. How does the
test error of the solution compare to the best result obtained using
polynomial kernels? What is the value of the soft margin?

Solution:

Figure 3 shows the average cross-validation performance as a function
of the regularization parameter C. C* =1 and g* = 0.05. O

C. Boosting

As discussed in class, AdaBoost can be viewed as coordinate descent applied
to an exponential objective function. Here, we consider an alternative en-

semble method algorithm, HingeBoost, that consists of applying coordinate
descent to an objective function based on the hinge loss. Using the same
notation as in class, consider the function F' defined for all a € RN by

m N
Fla) = Zmax 0,1—y; Zajhj(xi) , (6)
i=1 j=1

where the hjs are base classifiers belonging to a hypothesis set H of functions
taking values —1 or +1.

1. Show that F' is convex and admits a right- and left-derivative along
any direction.

Solution:

Since the hinge loss is convex, its composition with affine function of
« is also convex and F' is convex as as sum of convex functions.

For the existence of one-sided directional derivatives, one can use the
fact that any convex function has one-sided directional derivatives or
alternatively, that our specific function is the sum of piecewise affine
functions, which are also known to have one-sided directional deriva-
tives (think of one-dimensional hinge loss).

O

2. For any j € [1,N], let e; denote the direction corresponding to the
base hypothesis h;. Let a; denote the vector of coefficients ay ;, j €
[1, N] obtained after ¢ > 0 iterations of coordinate descent and f; =
Z;il ay jh; the predictor obtained after ¢ iterations.

Give the expression of the right-derivative F (a;—1,€;) and the left-
derivative F’ (a1, €j) after t — 1 iterations in terms of f;_.

Solution:

Distinguishing different cases depending on the value of y; f;—1(z;) = 1,
it is straightforward to derive the following expressions for all j €
[1, N]:

NE

F;(at—l’ ej) = —yih; (xi)[]'yift—l(ffi)<1 + 1(yihj($i)<0)/\(yift71(xi)zl)]

1

~.
I

M

Il
i

Fl(og-1,65) = > —yihi(2i)[1y, 5,y (m)<1 + Ly, (2)>0) A fra (@)=1)]-

)

The key here is that when y; fi—1(x;) # 1, each term in the sum will be
either 0 or the affine function independent of y;h;(x;). On the other
hand, when y; f—1(x;) = 1, the sign of y;h;(x;) determines whether the
finite differences will extend into the 0 portion of the affine portion of
the term. O

. Forany j € [1, N], define the maximum directional derivative d F'(c;—1, €;)
at o1 as follows:

OF(oy—1,ej) =
0 if F/ (ap—1,€5) <0< Fl(ay—1,€y)
F' (oy—1,e;) if F' (oy—1,e;) < F(ay—1,€5) <0
F' (oy—1,e5) if 0 < F (o—1,€j) < F(oy_1,€j).

The direction e; considered by the coordinate descent considered here
is the one maximizing |6F (o¢—1,€;)|. Once the best direction j is
selected, the step 7 can be determined by minimizing F'(c;—1 + ne;)
using a grid search. Give the pseudocode of HingeBoost.

Solution: The pseudocode of the HingeBoost algorithm is given in
Figure 5. O

. Bonus question: implement HingeBoost and AdaBoost using as base
classifiers boosting stumps and compare their performance on the data
set of Problem B. The number of rounds of boosting 1" can be deter-
mined via cross-validation varying 7" in powers of 10. Report the test
errors of each algorithm and compare them with those obtained for
SVMs in problem B.

Solution: The test errors of each algorithm should be approximately:

e SVM with Gaussian kernel: 18%

e SVM with Polynomial kernel: 20%
e AdaBoost: 17%

e HingeBoost: 19%

50

— Cross-validation
Testing

45

40

25

20

1840 0.5 1.0 15 2.0
gamma

2200

2000

1800

1600

1400

Num. of support vectors

1200

—— Marginal
— Total

.0 0.5 1.0 15 2.0
gamma

1008

0.30

0.25
0.20 /
0.15 /
0.10 /

0.05 /

0'0%.0 OiS 110 1i5 2.0
gamma

Margin

7
Figure 2: The test and validation error as a function of g (top panel), the
number of total and marginal support vectors (second panel) and the margin
as function of g.

55 T T T T T T T 52

50 50}
as5p 48[
401 46|
35 44}
30f 42}
25} 40
20} 38}
15t 36!
52 52

50 50[
48 48[
461 46|
445 44}
42y 42
401 40

38} 38

36—4 —l3 —l2 -1 0 1 2 3 4 36—4 -3 -2 -1 0 1 2 3 4

Figure 3: Average error (red) according to 10-fold cross-validation, with
error-bars (green and blue) indicating one standard deviation. Top left,
top right, bottom left and bottom right correspond to g = 0.05,0.5,1,2
respectively. Note that g = 1/202. On the x-axis we have logs C.

45

— Cross-validation
Testing

40

35

Errorin %

30

25

2‘1.0 15 2.0 2.5 3.0 35 4.0
degree

2500

—— Marginal
— Total

2000

1500

1000

Num. of support vectors

500

degree

1.0

0.8

Margin

0.4

0'{.0 1’.5 2.0 2"5 3"0 3’.5 4.0
degree

9
Figure 4: The test and validation error as a function of degree (top panel),
the number of total and marginal support vectors (second panel) and the
margin as function of d.

HINGEBOOST(S = ((z1,Y1)s - - s (Tm, Ym)))
f+<0

2 for j+« 1to N do

3 7= iy =Yl (@) [Ly, e <1 + Lyihy @) <A@ f (@) =1)]
4 = D0y =il () Ly, piy <t + Lgihy (20)>0)A(: £ () =1)]
5 if (1 <0)A(r>0) then
6 d[j] < 0
7

8

9

0

1

—_

elseif (I <r) then
dlj] < r
else d[j] «+ 1
fort < 1to T do
k < argmin |d[j]|
JE[L,N]
12 1 « argmin, >, G(f + nhy) > line search
13 f — f + nhk
14 return f

Figure 5: Pseudocode of the HingeBoost algorithm. The function G is
defined for any f by G(f) = >_", max(0, f(x;)).

10

