A. VC-dimension of axis-aligned squares or triangles

1. What is the VC-dimension of axis-aligned squares in the plane?

 Solution: It is not hard to see that the set of 3 points with coordinates
 \((1,0)\), \((0,1)\), and \((-1,0)\) can shattered by axis-aligned squares: e.g.,
 to label positively two of these points, use a square defined by the
 axes and with those 2 points as corners. Thus, the VC-dimension is
 at least 3. No set of 4 points can be fully shattered. To see this, let
 \(P_T\) be the highest point, \(P_B\) the lowest, \(P_L\) the leftmost, and \(P_R\) the
 rightmost, assuming for now that these can be defined in a unique way
 (no tie) – the cases where there are ties can be treated in a simpler
 fashion. Assume without loss of generality that the difference \(d_{BT}\) of
 y-coordinates between \(P_T\) and \(P_B\) is greater than the difference \(d_{LR}\)
 of x-coordinates between \(P_L\) and \(P_R\). Then, \(P_T\) and \(P_B\) cannot be
 labeled positively while \(P_L\) and \(P_R\) are labeled negatively. Thus, the
 VC-dimension of axis-aligned squares in the plane is 3.

2. Consider right triangles in the plane with the sides adjacent to the
 right angle both parallel to the axes and with the right angle in the
 lower left corner. What is the VC-dimension of this family?

 Solution: Check that the set of 4 points with coordinates \((1,0)\), \((0,1)\),
 \((-1,0)\), and \((0,-1)\) can be shattered by such triangles. This is essentially
 the same as the case with axis aligned rectangles. To see that
 no five points can be shattered, the same example or argument as for
 axis-aligned rectangles can be used: labeling all points positively ex-
 cept from the one within the interior of the convex hull is not possible
 (for the degenerate cases where no point is in the interior of the convex
 hull is simpler, this is even easier to see). Thus, the VC-dimension of
 this family of triangles is 4.
B. Growth function bound

1. Consider the family H of threshold functions over \mathbb{R}^N defined by $\{ x = (x_1, \ldots, x_N) \mapsto \text{sgn}(x_i - \theta) : i \in [1, N], \theta \in \mathbb{R} \}$, where $\text{sgn}(z) = +1$ if $z \geq 0$, $\text{sgn}(z) = -1$ otherwise. Give an explicit upper bound on the growth function $\Pi_H(m)$ of H that is in $O(mN)$.

Solution: For each feature, x_j, there at most $m + 1$ ways of selecting the threshold (between any two feature values or beyond or below all values). Thus, the total number of thresholds functions for a sample of size m is at most $(m + 1)^N$. Thus, the growth function is upper bounded by $(m + 1)^N$.

2. In class, we gave a bound on the Rademacher complexity of a family G in terms of the growth function (Lecture 3, slide 18). Show that a finer upper bound on the Rademacher complexity can be given in terms of $E_S[\Pi(G, S)]$, where $\Pi(G, S)$ is the number of ways to label the points in sample S.

Solution: Following the proof given in class and using Jensen’s inequality (at the last inequality), we can write:

$$\hat{R}_m(G) = \mathbb{E}_{S, \sigma} \left[\sup_{g \in G} \frac{1}{m} \begin{bmatrix} \sigma_1 \\ \vdots \\ \sigma_m \end{bmatrix} \cdot \begin{bmatrix} g(z_1) \\ \vdots \\ g(z_m) \end{bmatrix} \right]$$

$$\leq \mathbb{E}_{S} \left[\sqrt{m} \sqrt{2 \log \frac{\{|(g(z_1), \ldots, g(z_m)): g \in G|\}}{m}} \right]$$ (Massart’s Lemma)

$$= \mathbb{E}_{S} \left[\frac{\sqrt{m} \sqrt{2 \log \Pi(G, S)}}{m} \right]$$

$$\leq \frac{\sqrt{m} \sqrt{2 \log \mathbb{E}_{S}[\Pi(G, S)]}}{m} = \sqrt{\frac{2 \log \mathbb{E}_{S}[\Pi(G, S)]}{m}}.$$

Note that in the application of Jensen’s inequality, we are using the fact that $\sqrt{\log(x)}$ is concave, which is true because it is the composition of functions that are concave functions and the outer function is non-decreasing. It is not true in general that the composition of any two concave functions is concave.
C. VC-dimension of neural networks

Let C be a concept class over \mathbb{R}^r with VC-dimension d. A C-neural network with one intermediate layer is a concept defined over \mathbb{R}^n that can be represented by a directed acyclic graph such as that of Figure 1, in which the input nodes are those at the bottom and in which each other node is labeled with a concept $c \in C$.

The output of the neural network for a given input vector (x_1, \ldots, x_n) is obtained as follows. First, each of the n input nodes is labeled with the corresponding value $x_i \in \mathbb{R}$. Next, the value at a node u in the higher layer and labeled with c is obtained by applying c to the values of the input nodes admitting an edge ending in u. Note that since c takes values in $\{0, 1\}$, the value at u is in $\{0, 1\}$. The value at the top or output node is obtained similarly by applying the corresponding concept to the values of the nodes admitting an edge to the output node.

1. Let H denote the set of all neural networks defined as above with $k \geq 2$ internal nodes. Show that the growth function $\Pi_H(m)$ can be upper bounded in terms of the product of the growth functions of the hypothesis sets defined at each intermediate layer.

Solution: Let $\Pi_u(m)$ denote the growth function at a node u in the intermediate layer. For a fixed set of values at the intermediate layer, using the concept class C the output node can generate at most $\Pi_C(m)$ distinct labelings. There are $\prod_u \Pi_u(m)$ possible sets of values at the intermediate layer since, by definition, for a sample of size m, at most $\Pi_u(m)$ distinct values are possible at each u. Thus, at most $\Pi_C(m) \times \prod_u \Pi_u(m)$ labelings can be generated by the neural network and $\Pi_H(m) \leq \Pi_C(m) \prod_u \Pi_u(m)$.

2. Use that to upper bound the VC-dimension of the C-neural networks (hint: you can use the implication $m = 2x \log_2(xy) \Rightarrow m > x \log_2(ym)$ valid for $m \geq 1$, and $x, y > 0$ with $xy > 4$).

Solution: For any intermediate node u, $\Pi_u(m) = \Pi_C(m)$. Thus, for $\tilde{k} = k + 1$, $\Pi_H(m) \leq \Pi_C(m)^{\tilde{k}}$. By Sauer’s lemma, $\Pi_C(m) \leq \left(\frac{en}{d}\right)^d$, thus $\Pi_H(m) \leq \left(\frac{en}{d}\right)^{d\tilde{k}}$. Let $m = 2\tilde{k}d \log_2(e\tilde{k})$. In view of the inequality given by the hint and $e\tilde{k} > 4$, this implies $m > d\tilde{k} \log_2 \left(\frac{en}{d}\right)$, that is $2^m > \left(\frac{en}{d}\right)^{d\tilde{k}}$. Thus, the VC-dimension of H is less than

$$2\tilde{k}d \log_2(e\tilde{k}) = 2(k+1)d \log_2(e(k+1)).$$
3. Let \(C \) be the family of concept classes defined by threshold functions
\[C = \{ \text{sgn}(\sum_{j=1}^{r} w_j x_j) : w \in \mathbb{R}^r \}. \]
Give an upper bound on the VC-dimension of \(H \) in terms of \(k \) and \(r \).

Solution: For threshold functions, the VC-dimension of \(C \) is \(r \), thus, the VC-dimension of \(H \) is upper bounded by

\[2(k + 1)r \log_2(e(k + 1)). \]