
Mehryar Mohri
Foundations of Machine Learning 2014
Courant Institute of Mathematical Sciences
Homework assignment 1
September 17, 2014
Due: September 30, 2014

A. PAC learning of n-dimensional rectangles

Give a PAC-learning algorithm for C, the set of axis-aligned n-dimensional
rectangles in Rn, that is C = {[a1, b1] × · · · × [an, bn] : ai, bi ∈ R}. You
should give a careful proof similar to what was given in class for axis-aligned
rectangles (case n = 2). How does the sample complexity vary as a function
of n?

Solution: We let R′ be the smallest n-dimensional rectangle consistent with
the given sample. The proof is similar to the one given in class for rectangles
in the plane except that here we need to consider 2n regions ri, i ∈ [1, 2n],
along each face of the target n-dimensional rectangle with Pr[ri] ≥ ε

2n and
with Pr[ri − fi] < ε

2n where fi is the internal face of ri. Arguing as in the
proof given in class, assuming that Pr[R] > ε, if Pr[R(R′) > ε] then R′ must
miss at least one region ri. The probability that none of the m sample points
falls into region ri is (1− ε/2n)m. By the union bound, this shows that

Pr[R(R′) > ε] ≤ 2n(1− ε/2n)m ≤ 2ne−
εm
2n . (1)

Setting δ to the right-hand side shows that for

m ≥ 2n

ε
log

2n

δ
, (2)

with probability at least 1− δ, R(R′) ≤ ε.

B. Rademacher complexity of regularized neural networks

Let the input space be X = Rn1 . In this problem, we consider the family of
regularized neural networks defined by the following set of functions mapping
X to R:

H =

x 7→
n2∑

j=1

wjσ(uj · x) : ‖w‖1 ≤ Λ′, ‖uj‖2 ≤ Λ,∀j ∈ [1, n2]

 ,

1



where σ is an L-Lipschitz function. As an example, σ could be the sigmoid
function which is 1-Lipschitz.

1. Show that R̂S(H) = Λ′

m Eσ

[
sup‖u‖2≤Λ |

∑m
i=1 σiσ(u · xi)|

]
.

Solution:

R̂S(H) =
1
m

E
σ

 sup
‖w‖1≤Λ′,‖uj‖2≤Λ

m∑
i=1

σi

n2∑
j=1

wjσ(uj · xi)


=

1
m

E
σ

 sup
‖w‖1≤Λ′,‖uj‖2≤Λ

n2∑
j=1

wj

m∑
i=1

σiσ(uj · xi)


=

Λ′

m
E
σ

[
sup

‖uj‖2≤Λ
max

j∈[1,n2]

∣∣∣∣∣
m∑

i=1

σiσ(uj · xi)

∣∣∣∣∣
]

(all the weight put on largest term)

=
Λ′

m
E
σ

[
sup

‖uj‖2≤Λ,j∈[1,n2]

∣∣∣∣∣
m∑

i=1

σiσ(uj · xi)

∣∣∣∣∣
]

=
Λ′

m
E
σ

[
sup

‖u‖2≤Λ

∣∣∣∣∣
m∑

i=1

σiσ(u · xi)

∣∣∣∣∣
]

.

2. Use the following form of Talagrand’s lemma valid for all hypothesis
sets H and L-Lipschitz function Φ:

1
m

E
σ

[
sup
h∈H

∣∣∣∣∣
m∑

i=1

σi(Φ ◦ h)(xi)

∣∣∣∣∣
]
≤ L

m
E
σ

[
sup
h∈H

∣∣∣∣∣
m∑

i=1

σih(xi)

∣∣∣∣∣
]

,

to upper bound R̂S(H) in terms of the empirical Rademacher com-
plexity of H′, where H′ is defined by

H′ = {x 7→ s(u · x) : ‖u‖2 ≤ Λ, s ∈ {−1,+1}} .

Solution: By Talagrand’s lemma, since σ is L-Lipschitz, the following
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inequality holds:

R̂S(H) ≤ Λ′L

m
E
σ

[
sup
h∈H

∣∣∣∣∣
m∑

i=1

σiu · xi

∣∣∣∣∣
]

=
Λ′L

m
E
σ

[
sup
h∈H

sup
s∈{−1,+1}

s

m∑
i=1

σiu · xi

]
(def. of abs. value)

= Λ′L R̂S(H′).

3. Use the Cauchy-Schwarz inequality to show that

R̂S(H′) =
Λ
m

E
σ

[∥∥∥∥∥
m∑

i=1

σixi

∥∥∥∥∥
2

]
.

Solution:

R̂S(H′) =
1
m

E
σ

[
sup

‖u‖2≤Λ,s∈{−1,+1}

m∑
i=1

σisu · xi

]

=
1
m

E
σ

[
sup

‖u‖2≤Λ

∣∣∣∣∣
m∑

i=1

σiu · xi

∣∣∣∣∣
]

(def. of abs. val.)

=
1
m

E
σ

[
sup

‖u‖2≤Λ

∣∣∣∣∣u ·
m∑

i=1

σixi

∣∣∣∣∣
]

=
Λ
m

E
σ

[∥∥∥∥∥
m∑

i=1

σixi

∥∥∥∥∥
2

]
(Cauchy-Schwarz eq. case).

The last equality holds by setting u = Λ
Pm

i=1 σixi

‖
Pm

i1=1 σixi‖ .

4. Use the inequality E[‖X‖2] ≤
√

E[‖X‖2
2], which holds by Jensen’s

inequality to upper bound R̂S(H′).
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Solution:

R̂S(H′) =
Λ
m

E
σ

[∥∥∥∥∥
m∑

i=1

σixi

∥∥∥∥∥
2

]

≤ Λ
m

√√√√√E
σ

∥∥∥∥∥
m∑

i=1

σixi

∥∥∥∥∥
2

2

 (Jensen’s ineq.)

=
1
m

√√√√ m∑
i,j=1

E
σ

[σiσj ] (xi · xj)

=
Λ
m

√√√√ m∑
i,j=1

1i=j(xi · xj) (independence of σis)

=
Λ
m

√√√√ m∑
i=1

‖xi‖2
2.

5. Assume that for all x ∈ S, ‖x‖2 ≤ r for some r > 0. Use the previous
questions to derive an upper bound on the Rademacher complexity of
H in terms of r.

Solution: In view of the previous questions,

R̂S(H) ≤ Λ′L R̂S(H′) ≤ Λ′ΛL

m

√√√√ m∑
i=1

‖xi‖2
2 ≤

Λ′ΛL

m

√
mr2 =

Λ′ΛLr√
m

.
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