

Mehryar Mohri
 Foundations of Machine Learning 2014
 Courant Institute of Mathematical Sciences
 Homework assignment 1
 September 17, 2014
 Due: September 30, 2014

A. PAC learning of n -dimensional rectangles

Give a PAC-learning algorithm for C , the set of axis-aligned n -dimensional rectangles in \mathbb{R}^n , that is $C = \{[a_1, b_1] \times \cdots \times [a_n, b_n] : a_i, b_i \in \mathbb{R}\}$. You should give a careful proof similar to what was given in class for axis-aligned rectangles (case $n = 2$). How does the sample complexity vary as a function of n ?

Solution: We let R' be the smallest n -dimensional rectangle consistent with the given sample. The proof is similar to the one given in class for rectangles in the plane except that here we need to consider $2n$ regions r_i , $i \in [1, 2n]$, along each face of the target n -dimensional rectangle with $\Pr[r_i] \geq \frac{\epsilon}{2n}$ and with $\Pr[r_i - f_i] < \frac{\epsilon}{2n}$ where f_i is the internal face of r_i . Arguing as in the proof given in class, assuming that $\Pr[R] > \epsilon$, if $\Pr[R(R') > \epsilon]$ then R' must miss at least one region r_i . The probability that none of the m sample points falls into region r_i is $(1 - \epsilon/2n)^m$. By the union bound, this shows that

$$\Pr[R(R') > \epsilon] \leq 2n(1 - \epsilon/2n)^m \leq 2ne^{-\frac{\epsilon m}{2n}}. \quad (1)$$

Setting δ to the right-hand side shows that for

$$m \geq \frac{2n}{\epsilon} \log \frac{2n}{\delta}, \quad (2)$$

with probability at least $1 - \delta$, $R(R') \leq \epsilon$.

B. Rademacher complexity of regularized neural networks

Let the input space be $X = \mathbb{R}^{n_1}$. In this problem, we consider the family of regularized neural networks defined by the following set of functions mapping X to \mathbb{R} :

$$\mathcal{H} = \left\{ \mathbf{x} \mapsto \sum_{j=1}^{n_2} w_j \sigma(\mathbf{u}_j \cdot \mathbf{x}) : \|\mathbf{w}\|_1 \leq \Lambda', \|\mathbf{u}_j\|_2 \leq \Lambda, \forall j \in [1, n_2] \right\},$$

where σ is an L -Lipschitz function. As an example, σ could be the sigmoid function which is 1-Lipschitz.

1. Show that $\widehat{\mathfrak{R}}_S(\mathcal{H}) = \frac{\Lambda'}{m} \mathbb{E}_{\sigma} \left[\sup_{\|\mathbf{u}\|_2 \leq \Lambda} \left| \sum_{i=1}^m \sigma_i \sigma(\mathbf{u} \cdot \mathbf{x}_i) \right| \right]$.

Solution:

$$\begin{aligned}
\widehat{\mathfrak{R}}_S(\mathcal{H}) &= \frac{1}{m} \mathbb{E}_{\sigma} \left[\sup_{\|\mathbf{w}\|_1 \leq \Lambda', \|\mathbf{u}_j\|_2 \leq \Lambda} \sum_{i=1}^m \sigma_i \sum_{j=1}^{n_2} w_j \sigma(\mathbf{u}_j \cdot \mathbf{x}_i) \right] \\
&= \frac{1}{m} \mathbb{E}_{\sigma} \left[\sup_{\|\mathbf{w}\|_1 \leq \Lambda', \|\mathbf{u}_j\|_2 \leq \Lambda} \sum_{j=1}^{n_2} w_j \sum_{i=1}^m \sigma_i \sigma(\mathbf{u}_j \cdot \mathbf{x}_i) \right] \\
&= \frac{\Lambda'}{m} \mathbb{E}_{\sigma} \left[\sup_{\|\mathbf{u}_j\|_2 \leq \Lambda} \max_{j \in [1, n_2]} \left| \sum_{i=1}^m \sigma_i \sigma(\mathbf{u}_j \cdot \mathbf{x}_i) \right| \right] \quad (\text{all the weight put on largest term}) \\
&= \frac{\Lambda'}{m} \mathbb{E}_{\sigma} \left[\sup_{\|\mathbf{u}_j\|_2 \leq \Lambda, j \in [1, n_2]} \left| \sum_{i=1}^m \sigma_i \sigma(\mathbf{u}_j \cdot \mathbf{x}_i) \right| \right] \\
&= \frac{\Lambda'}{m} \mathbb{E}_{\sigma} \left[\sup_{\|\mathbf{u}\|_2 \leq \Lambda} \left| \sum_{i=1}^m \sigma_i \sigma(\mathbf{u} \cdot \mathbf{x}_i) \right| \right].
\end{aligned}$$

2. Use the following form of Talagrand's lemma valid for all hypothesis sets H and L -Lipschitz function Φ :

$$\frac{1}{m} \mathbb{E}_{\sigma} \left[\sup_{h \in H} \left| \sum_{i=1}^m \sigma_i (\Phi \circ h)(x_i) \right| \right] \leq \frac{L}{m} \mathbb{E}_{\sigma} \left[\sup_{h \in H} \left| \sum_{i=1}^m \sigma_i h(x_i) \right| \right],$$

to upper bound $\widehat{\mathfrak{R}}_S(\mathcal{H})$ in terms of the empirical Rademacher complexity of \mathcal{H}' , where \mathcal{H}' is defined by

$$\mathcal{H}' = \{ \mathbf{x} \mapsto s(\mathbf{u} \cdot \mathbf{x}) : \|\mathbf{u}\|_2 \leq \Lambda, s \in \{-1, +1\} \}.$$

Solution: By Talagrand's lemma, since σ is L -Lipschitz, the following

inequality holds:

$$\begin{aligned}
\widehat{\mathfrak{R}}_S(\mathcal{H}) &\leq \frac{\Lambda' L}{m} \mathbb{E}_{\boldsymbol{\sigma}} \left[\sup_{h \in H} \left| \sum_{i=1}^m \sigma_i \mathbf{u} \cdot \mathbf{x}_i \right| \right] \\
&= \frac{\Lambda' L}{m} \mathbb{E}_{\boldsymbol{\sigma}} \left[\sup_{h \in H} \sup_{s \in \{-1, +1\}} s \sum_{i=1}^m \sigma_i \mathbf{u} \cdot \mathbf{x}_i \right] \quad (\text{def. of abs. value}) \\
&= \Lambda' L \widehat{\mathfrak{R}}_S(\mathcal{H}').
\end{aligned}$$

3. Use the Cauchy-Schwarz inequality to show that

$$\widehat{\mathfrak{R}}_S(\mathcal{H}') = \frac{\Lambda}{m} \mathbb{E}_{\boldsymbol{\sigma}} \left[\left\| \sum_{i=1}^m \sigma_i \mathbf{x}_i \right\|_2 \right].$$

Solution:

$$\begin{aligned}
\widehat{\mathfrak{R}}_S(\mathcal{H}') &= \frac{1}{m} \mathbb{E}_{\boldsymbol{\sigma}} \left[\sup_{\|\mathbf{u}\|_2 \leq \Lambda, s \in \{-1, +1\}} \sum_{i=1}^m \sigma_i s \mathbf{u} \cdot \mathbf{x}_i \right] \\
&= \frac{1}{m} \mathbb{E}_{\boldsymbol{\sigma}} \left[\sup_{\|\mathbf{u}\|_2 \leq \Lambda} \left| \sum_{i=1}^m \sigma_i \mathbf{u} \cdot \mathbf{x}_i \right| \right] \quad (\text{def. of abs. val.}) \\
&= \frac{1}{m} \mathbb{E}_{\boldsymbol{\sigma}} \left[\sup_{\|\mathbf{u}\|_2 \leq \Lambda} \left| \mathbf{u} \cdot \sum_{i=1}^m \sigma_i \mathbf{x}_i \right| \right] \\
&= \frac{\Lambda}{m} \mathbb{E}_{\boldsymbol{\sigma}} \left[\left\| \sum_{i=1}^m \sigma_i \mathbf{x}_i \right\|_2 \right] \quad (\text{Cauchy-Schwarz eq. case}).
\end{aligned}$$

The last equality holds by setting $\mathbf{u} = \frac{\Lambda \sum_{i=1}^m \sigma_i \mathbf{x}_i}{\|\sum_{i=1}^m \sigma_i \mathbf{x}_i\|}$.

4. Use the inequality $\mathbb{E}[\|\mathbf{X}\|_2] \leq \sqrt{\mathbb{E}[\|\mathbf{X}\|_2^2]}$, which holds by Jensen's inequality to upper bound $\widehat{\mathfrak{R}}_S(\mathcal{H}')$.

Solution:

$$\begin{aligned}
\widehat{\mathfrak{R}}_S(\mathcal{H}') &= \frac{\Lambda}{m} \mathbb{E}_{\sigma} \left[\left\| \sum_{i=1}^m \sigma_i \mathbf{x}_i \right\|_2 \right] \\
&\leq \frac{\Lambda}{m} \sqrt{\mathbb{E}_{\sigma} \left[\left\| \sum_{i=1}^m \sigma_i \mathbf{x}_i \right\|_2^2 \right]} \quad (\text{Jensen's ineq.}) \\
&= \frac{1}{m} \sqrt{\sum_{i,j=1}^m \mathbb{E}_{\sigma} [\sigma_i \sigma_j] (\mathbf{x}_i \cdot \mathbf{x}_j)} \\
&= \frac{\Lambda}{m} \sqrt{\sum_{i,j=1}^m 1_{i=j} (\mathbf{x}_i \cdot \mathbf{x}_j)} \quad (\text{independence of } \sigma_i \text{s}) \\
&= \frac{\Lambda}{m} \sqrt{\sum_{i=1}^m \|\mathbf{x}_i\|_2^2}.
\end{aligned}$$

5. Assume that for all $\mathbf{x} \in S$, $\|\mathbf{x}\|_2 \leq r$ for some $r > 0$. Use the previous questions to derive an upper bound on the Rademacher complexity of \mathcal{H} in terms of r .

Solution: In view of the previous questions,

$$\widehat{\mathfrak{R}}_S(\mathcal{H}) \leq \Lambda' L \widehat{\mathfrak{R}}_S(\mathcal{H}') \leq \frac{\Lambda' \Lambda L}{m} \sqrt{\sum_{i=1}^m \|\mathbf{x}_i\|_2^2} \leq \frac{\Lambda' \Lambda L}{m} \sqrt{mr^2} = \frac{\Lambda' \Lambda L r}{\sqrt{m}}.$$