Mehryar Mohri

Foundations of Machine Learning

Courant Institute of Mathematical Sciences
Homework assignment 2

February 25, 2013

Due: March 11, 2013

A. Rademacher complexity - properties

Let H be a hypothesis set reduced to two functions: H = {h_1,h41} and let
S = (x1,...,T,m) C X be asample of size m.

1. Assume that h_; is the constant function taking value —1 and h.; the con-
stant function taking the value +1. What is the VC-dimension d of H?
Upper bound the empirical Rademacher complexity Rs(H ) (hint: express
Rs(H) in terms of the absolute value of a sum of Rademacher variables and
apply Jensen’s inequality) and compare your bound with y/d/m.

Solution: VCdim(H) = 1 since H can shatter one point and clearly at most
one. Observe that
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Thus, by Jensen’s inequality,
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By the Khintchine inequality, the upper bound is tight modulo the constant
1/+/2. The upper bound coincides with /d/m. 0



2. Assume that h_; is the constant function taking value —1 and h,; the func-
tion taking value —1 everywhere except at x; where it takes the value +1.
What is the VC-dimension d of H? Compute the empirical Rademacher
complexity Rg(H).

Solution: VCdim(H) = 1 since H can shatter x; and clearly at most one
point. By definition,
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Here Rg(H) is a clearly more favorable quantity than \/d/m = /1/m.
g

B. Rademacher complexity bound

Let G be a family of functions mapping from Z to [0, 1]. The general Rademacher
complexity bound presented in class was based on the analysis of the function ®
defined by ®(S) = supgeq E[g] - Eg|[g] for any training sample S = (21, . .., zm)
of size m, with Eg[g] = LS~ 9(z). Instead, apply McDiarmid’s inequality to
W defined by ¥(S) = sup e Elg] — Es[g] — 2Rs(G) and try to obtain a slighty
better generalization bound than the one obtained in class in terms of the empirical
Rademacher complexity.

Solution: Let S’ be a sample differing from S by one point, say z,,. Then, since
a difference of suprema is upper bounded by the supremum of the differences, we



can write
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Thus, by McDiarmid’s inequality, Pr[¥(S) — E[¥U(S)] > ¢ < exp(—%meQ).
Thus, for any ¢ > 0, with probability at least 1 — 4,

log%
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By definition, E[¥(S)] = E[®(S5)]—2R,,(G). In class, we showed that E[®(.5)] <
1
2R,,(G). Thus, with probability at least 1 — J, ¥(.S) < 4/ h;if , that is
~ ~ log%
Vg € G, Elg] < Eslg] +2Rs(G) + 31/ - —*. 3)

C. VC-dimension of union of % intervals.

What is the VC-dimension of subsets of the real line formed by the union of &
intervals?

Solution:

The VC-dimension of this class is 2k. It is not hard to see that any 2k distinct
points on the real line can be shattered using % intervals; it suffices to shatter each
of the k pairs of consecutive points with an interval. Assume now that 2k + 1
distinct points x1 < -+ < o1 are given. For any i € [1,2k + 1], label z; with
(—1)i*1, that is alternatively label points with 1 or —1. This leads to k + 1 points
labeled positively and requires 2k + 1 intervals to shatter the set, since no interval
can contain two consecutive points. Thus, no set of 2k + 1 points can be shattered
by k intervals, and the VC-dimension of the union of k intervals is 2k. a

D. Generalization bound based on covering numbers.

Let H be a family of functions mapping X to a subset of real numbers ) C R. For
any € > 0, the covering number N'(H, ¢) of H for the L, norm is the minimal



k € N such that H can be covered with k balls of radius e, that is, there exists
{h1,...,ht} € H such that, for all h € H, there exists i < k with ||h — h;||cc =
max;ecy |h(x) — hi(x)| < e. In particular, when H is a compact set, a finite
covering can be extracted from a covering of H with balls of radius € and thus
N (H,e) is finite.

Covering numbers provide a measure of the complexity of a class of functions:
the larger the covering number, the richer is the family of functions. The objective
of this problem is to illustrate this by proving a learning bound in the case of the
squared loss. Let D denote a distribution over X x ) according to which labeled
examples are drawn. Then, the generalization error of h € H for the squared loss
is defined by R(h) = E(; 4)~p[(h(z) — y)?] and its empirical error for a labeled
sample S = ((z1,91), - -+, (Zm,ym)) by R(h) = LS (R(2:) — yi)?. We will
assume that H is bounded, that is there exists M/ > 0 such that |h(z) —y| < M
for all (z,y) € X x ). The following is the generalization bound proven in this
problem:

$FB,. [ sup [R() - R(h)| > e} < N(H, SiM)zexp (;X}f) L@

The proof is based on the following steps.

~

1. Let Lg = R(h) — R(h), then show that for all h;, ho € H and any labeled
sample .S, the following inequality holds:

|Ls(h1) — Ls(h2)| < 4M|[h1 — haloo -

Solution: First split the term into two separate terms:
[Ls(hn) = Ls(ho)| < |R(h1) = R(h2)| + | R(h) — R(ha)|

= | B0 (@)= (o) =) [+ D ()= ~hal) .
=1

Then, expanding the term

(hi(z) —y)* = (ha(z) — y)* = (h1(x) — ha(x))(h1 + ha — 2y)
= (h1(z) — ha(x)) ((h1 — y) + (ha — y)) < [|h1 — hal|sc2M |

allows us to bound both the empirical and true error, resulting in a total bound
Of4MHh1 —hg”oo. O



2. Assume that H can be covered by k subsets B, ..., By, thatis H = By U
.. U Byg. Then, show that, for any € > 0, the following upper bound holds:

k
Pr |sup|Lg(h >e} < Pr [sup Lg(h)| > €.
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Solution: This follows by splitting the event into the union of several smaller
events and then using the sum rule,

Pr [ sup |Ls (k)] = ¢

heH
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3. Finally, let K = N(H, g5;) and let By, ..., By be balls of radius ¢/(8M)
centered at hy, . .., hy covering H. Use part (a) to show that for all i € [1, k],

Pr [sw Ls)l =] < Pr [ILsth)| = 5

heB; 2

and apply Hoeffding’s inequality to prove (4).

Solution: For any ¢ let h; be the center of ball B; with radius SLM. Note that
forany h € H we have |Lg(h) — Lg(h;)| < 4M||h — h;|lco < €/2. Thus, if
for any h € B; we have |Lg(h)| > € it must be the case that |Lg(h;) > €2/,
which shows the inequality.

To complete the bound, we use Hoeffding’s inequality applied to the random
variables (h(z;) — y;)?/m < M?/m, which guarantees
2

v [|Lg(hi)| > a < 2exp (%)



