Mehryar Mohri Foundations of Machine Learning Courant Institute of Mathematical Sciences Homework assignment 2 February 25, 2013

Due: March 11, 2013

A. Rademacher complexity - properties

Let H be a hypothesis set reduced to two functions: $H = \{h_{-1}, h_{+1}\}$ and let $S = (x_1, \dots, x_m) \subseteq \mathcal{X}$ be a sample of size m.

1. Assume that h_{-1} is the constant function taking value -1 and h_{+1} the constant function taking the value +1. What is the VC-dimension d of H? Upper bound the empirical Rademacher complexity $\mathfrak{R}_S(H)$ (hint: express $\mathfrak{R}_S(H)$ in terms of the absolute value of a sum of Rademacher variables and apply Jensen's inequality) and compare your bound with $\sqrt{d/m}$.

Solution: $\operatorname{VCdim}(H)=1$ since H can shatter one point and clearly at most one. Observe that

$$\sup_{h \in H} \sum_{i=1}^{m} \sigma_i h(x_i) = \sup_{h \in H} \left(\sum_{i=1}^{m} \sigma_i \right) h(x_1) = \left| \sum_{i=1}^{m} \sigma_i \right|. \tag{1}$$

Thus, by Jensen's inequality,

$$\mathfrak{R}_{S}(H) = \frac{1}{m} \operatorname{E} \left[\left| \sum_{i=1}^{m} \sigma_{i} \right| \right]$$

$$\leq \frac{1}{m} \left[\operatorname{E} \left[\left(\sum_{i=1}^{m} \sigma_{i} \right)^{2} \right] \right]^{1/2}$$

$$= \frac{1}{m} \left[\operatorname{E} \left[\sum_{i=1}^{m} \sigma_{i}^{2} \right] \right]^{1/2} \qquad (\operatorname{E}[\sigma_{i}\sigma_{j}] = 0 \text{ for } i \neq j)$$

$$= \frac{1}{\sqrt{m}}.$$

By the Khintchine inequality, the upper bound is tight modulo the constant $1/\sqrt{2}$. The upper bound coincides with $\sqrt{d/m}$.

2. Assume that h_{-1} is the constant function taking value -1 and h_{+1} the function taking value -1 everywhere except at x_1 where it takes the value +1. What is the VC-dimension d of H? Compute the empirical Rademacher complexity $\mathfrak{R}_S(H)$.

Solution: VCdim(H) = 1 since H can shatter x_1 and clearly at most one point. By definition,

$$\mathfrak{R}_{S}(H) = \frac{1}{m} \operatorname{E} \left[\sup_{h \in H} \sum_{i=1}^{m} \sigma_{i} h(x_{i}) \right]$$

$$= \frac{1}{m} \operatorname{E} \left[\sup_{h \in H} \sigma_{1} h(x_{1}) - \sum_{i=2}^{m} \sigma_{i} \right]$$

$$= \frac{1}{m} \operatorname{E} \left[\sup_{h \in H} \sigma_{1} h(x_{1}) \right] \qquad (\operatorname{E}[\sigma_{i}] = 0)$$

$$= \frac{1}{m} \operatorname{E} \left[1 \right] = \frac{1}{m}.$$

Here $\Re_S(H)$ is a clearly more favorable quantity than $\sqrt{d/m} = \sqrt{1/m}$.

B. Rademacher complexity bound

Let G be a family of functions mapping from Z to [0,1]. The general Rademacher complexity bound presented in class was based on the analysis of the function Φ defined by $\Phi(S) = \sup_{g \in G} \mathrm{E}[g] - \widehat{\mathrm{E}}_S[g]$ for any training sample $S = (z_1, \ldots, z_m)$ of size m, with $\widehat{\mathrm{E}}_S[g] = \frac{1}{m} \sum_{i=1}^m g(z_i)$. Instead, apply McDiarmid's inequality to Ψ defined by $\Psi(S) = \sup_{g \in G} \mathrm{E}[g] - \widehat{\mathrm{E}}_S[g] - 2\widehat{\mathfrak{R}}_S(G)$ and try to obtain a slighty better generalization bound than the one obtained in class in terms of the empirical Rademacher complexity.

Solution: Let S' be a sample differing from S by one point, say z_m . Then, since a difference of suprema is upper bounded by the supremum of the differences, we

can write

$$\Psi(S') - \Psi(S) = \sup_{g \in G} (\mathbf{E}[g] - \widehat{\mathbf{E}}_{S'}[g]) - \sup_{g \in G} (\mathbf{E}[g] - \widehat{\mathbf{E}}_{S}[g]) + \frac{2}{m} \mathop{\mathbf{E}}_{\sigma} \left[\sup_{g \in G} \sum_{i=1}^{m} \sigma_{i} g(z_{i}) - \sup_{g \in G} \sum_{i=1}^{m} \sigma_{i} g(z'_{i}) \right]$$

$$\leq \sup_{g \in G} (\mathbf{E}[g] - \widehat{\mathbf{E}}_{S'}[g]) - (\mathbf{E}[g] - \widehat{\mathbf{E}}_{S}[g]) + \frac{2}{m} \mathop{\mathbf{E}}_{\sigma} \left[\sup_{g \in G} \sum_{i=1}^{m} \sigma_{i} g(z_{i}) - \sum_{i=1}^{m} \sigma_{i} g(z'_{i}) \right]$$

$$= \sup_{g \in G} \frac{1}{m} (g(z_{m}) - g(z'_{m})) + 2 \mathop{\mathbf{E}}_{\sigma} \left[\frac{1}{m} \sup_{g \in G} \sigma_{m} (g(z_{m}) - g(z'_{m})) \right] \leq \frac{3}{m}.$$

Thus, by McDiarmid's inequality, $\Pr[\Psi(S) - \mathbb{E}[\Psi(S)] > \epsilon] \leq \exp(-\frac{2}{9}m\epsilon^2)$. Thus, for any $\delta > 0$, with probability at least $1 - \delta$,

$$\forall g \in G, \Psi(S) - \mathbb{E}[\Psi(S) \le 3\sqrt{\frac{\log \frac{1}{\delta}}{2m}}.$$
 (2)

By definition, $\mathrm{E}[\Psi(S)] = \mathrm{E}[\Phi(S)] - 2\mathfrak{R}_m(G)$. In class, we showed that $\mathrm{E}[\Phi(S)] \leq 2\mathfrak{R}_m(G)$. Thus, with probability at least $1 - \delta$, $\Psi(S) \leq \sqrt{\frac{\log \frac{1}{\delta}}{2m}}$, that is

$$\forall g \in G, \mathbb{E}[g] \le \widehat{\mathbb{E}}_S[g] + 2\widehat{\mathfrak{R}}_S(G) + 3\sqrt{\frac{\log \frac{1}{\delta}}{2m}}.$$
 (3)

C. VC-dimension of union of k intervals.

What is the VC-dimension of subsets of the real line formed by the union of k intervals?

Solution:

The VC-dimension of this class is 2k. It is not hard to see that any 2k distinct points on the real line can be shattered using k intervals; it suffices to shatter each of the k pairs of consecutive points with an interval. Assume now that 2k+1 distinct points $x_1 < \cdots < x_{2k+1}$ are given. For any $i \in [1, 2k+1]$, label x_i with $(-1)^{i+1}$, that is alternatively label points with 1 or -1. This leads to k+1 points labeled positively and requires 2k+1 intervals to shatter the set, since no interval can contain two consecutive points. Thus, no set of 2k+1 points can be shattered by k intervals, and the VC-dimension of the union of k intervals is 2k.

D. Generalization bound based on covering numbers.

Let H be a family of functions mapping \mathcal{X} to a subset of real numbers $\mathcal{Y} \subseteq \mathbb{R}$. For any $\epsilon > 0$, the *covering number* $\mathcal{N}(H, \epsilon)$ of H for the L_{∞} norm is the minimal

 $k \in \mathbb{N}$ such that H can be covered with k balls of radius ϵ , that is, there exists $\{h_1,\ldots,h_k\}\subseteq H$ such that, for all $h\in H$, there exists $i\leq k$ with $\|h-h_i\|_{\infty}=\max_{x\in\mathcal{X}}|h(x)-h_i(x)|\leq \epsilon$. In particular, when H is a compact set, a finite covering can be extracted from a covering of H with balls of radius ϵ and thus $\mathcal{N}(H,\epsilon)$ is finite.

Covering numbers provide a measure of the complexity of a class of functions: the larger the covering number, the richer is the family of functions. The objective of this problem is to illustrate this by proving a learning bound in the case of the squared loss. Let D denote a distribution over $\mathcal{X} \times \mathcal{Y}$ according to which labeled examples are drawn. Then, the generalization error of $h \in H$ for the squared loss is defined by $R(h) = \mathrm{E}_{(x,y)\sim D}[(h(x)-y)^2]$ and its empirical error for a labeled sample $S = ((x_1,y_1),\ldots,(x_m,y_m))$ by $\widehat{R}(h) = \frac{1}{m}\sum_{i=1}^m (h(x_i)-y_i)^2$. We will assume that H is bounded, that is there exists M>0 such that $|h(x)-y|\leq M$ for all $(x,y)\in\mathcal{X}\times\mathcal{Y}$. The following is the generalization bound proven in this problem:

$$\Pr_{S \sim D^m} \left[\sup_{h \in H} |R(h) - \widehat{R}(h)| \ge \epsilon \right] \le \mathcal{N} \left(H, \frac{\epsilon}{8M} \right) 2 \exp\left(\frac{-m\epsilon^2}{2M^4} \right). \tag{4}$$

The proof is based on the following steps.

1. Let $L_S = R(h) - \widehat{R}(h)$, then show that for all $h_1, h_2 \in H$ and any labeled sample S, the following inequality holds:

$$|L_S(h_1) - L_S(h_2)| \le 4M||h_1 - h_2||_{\infty}$$
.

Solution: First split the term into two separate terms:

$$|L_S(h_1) - L_S(h_2)| \le |R(h_1) - R(h_2)| + |\widehat{R}(h_1) - \widehat{R}(h_2)|$$

$$= \left| \underset{x,y}{\text{E}} [(h_1(x) - y)^2 - (h_2(x) - y)^2] \right| + \left| \frac{1}{m} \sum_{i=1}^m (h_1(x_i) - y_i)^2 - (h_2(x_i) - y_i)^2 \right|.$$

Then, expanding the term

$$(h_1(x) - y)^2 - (h_2(x) - y)^2 = (h_1(x) - h_2(x))(h_1 + h_2 - 2y)$$

= $(h_1(x) - h_2(x))((h_1 - y) + (h_2 - y)) \le ||h_1 - h_2||_{\infty} 2M$,

allows us to bound both the empirical and true error, resulting in a total bound of $4M\|h_1 - h_2\|_{\infty}$.

2. Assume that H can be covered by k subsets B_1, \ldots, B_k , that is $H = B_1 \cup \ldots \cup B_k$. Then, show that, for any $\epsilon > 0$, the following upper bound holds:

$$\Pr_{S \sim D^m} \left[\sup_{h \in H} |L_S(h)| \ge \epsilon \right] \le \sum_{i=1}^k \Pr_{S \sim D^m} \left[\sup_{h \in B_i} |L_S(h)| \ge \epsilon \right].$$

Solution: This follows by splitting the event into the union of several smaller events and then using the sum rule,

$$\Pr_{S} \left[\sup_{h \in H} |L_{S}(h)| \ge \epsilon \right]$$

$$= \Pr_{S} \left[\bigvee_{i=1}^{k} \sup_{h \in B_{i}} |L_{S}(h)| \ge \epsilon \right] \le \sum_{i=1}^{k} \Pr_{S} \left[\sup_{h \in B_{i}} |L_{S}(h)| \ge \epsilon \right].$$

3. Finally, let $k = \mathcal{N}(H, \frac{\epsilon}{8M})$ and let B_1, \ldots, B_k be balls of radius $\epsilon/(8M)$ centered at h_1, \ldots, h_k covering H. Use part (a) to show that for all $i \in [1, k]$,

$$\Pr_{S \sim D^m} \left[\sup_{h \in B_i} |L_S(h)| \ge \epsilon \right] \le \Pr_{S \sim D^m} \left[|L_S(h_i)| \ge \frac{\epsilon}{2} \right],$$

and apply Hoeffding's inequality to prove (4).

Solution: For any i let h_i be the center of ball B_i with radius $\frac{\epsilon}{8M}$. Note that for any $h \in H$ we have $|L_S(h) - L_S(h_i)| \leq 4M \|h - h_i\|_{\infty} \leq \epsilon/2$. Thus, if for any $h \in B_i$ we have $|L_S(h)| \geq \epsilon$ it must be the case that $|L_S(h_i)| \geq \epsilon/2$, which shows the inequality.

To complete the bound, we use Hoeffding's inequality applied to the random variables $(h(x_i) - y_i)^2/m \le M^2/m$, which guarantees

$$\Pr_{S} \left[|L_{S}(h_{i})| \ge \frac{\epsilon}{2} \right] \le 2 \exp \left(\frac{-m\epsilon^{2}}{2M^{4}} \right).$$