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A. Rademacher complexity - properties

Let H be a hypothesis set reduced to two functions: H = {h−1, h+1} and let
S = (x1, . . . , xm) ⊆ X be a sample of size m.

1. Assume that h−1 is the constant function taking value −1 and h+1 the con-
stant function taking the value +1. What is the VC-dimension d of H?
Upper bound the empirical Rademacher complexity RS(H) (hint: express
RS(H) in terms of the absolute value of a sum of Rademacher variables and
apply Jensen’s inequality) and compare your bound with

√
d/m.

Solution: VCdim(H) = 1 since H can shatter one point and clearly at most
one. Observe that

sup
h∈H

m∑
i=1

σih(xi) = sup
h∈H

( m∑
i=1

σi

)
h(x1) =

∣∣∣ m∑
i=1

σi

∣∣∣. (1)

Thus, by Jensen’s inequality,

RS(H) =
1
m

E
σ

[∣∣∣ m∑
i=1

σi

∣∣∣]
≤ 1

m

[
E
σ

[
(

m∑
i=1

σi)2
]]1/2

=
1
m

[
E
σ

[ m∑
i=1

σ2
i

]]1/2
(E[σiσj ] = 0 for i 6= j)

=
1√
m

.

By the Khintchine inequality, the upper bound is tight modulo the constant
1/
√

2. The upper bound coincides with
√

d/m. ut
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2. Assume that h−1 is the constant function taking value −1 and h+1 the func-
tion taking value −1 everywhere except at x1 where it takes the value +1.
What is the VC-dimension d of H? Compute the empirical Rademacher
complexity RS(H).

Solution: VCdim(H) = 1 since H can shatter x1 and clearly at most one
point. By definition,

RS(H) =
1
m

E
σ

[
sup
h∈H

m∑
i=1

σih(xi)
]

=
1
m

E
σ

[
sup
h∈H

σ1h(x1)−
m∑

i=2

σi

]
=

1
m

E
σ1

[
sup
h∈H

σ1h(x1)
]

(E[σi] = 0)

=
1
m

E
σ1

[
1
]

=
1
m

.

Here RS(H) is a clearly more favorable quantity than
√

d/m =
√

1/m.
ut

B. Rademacher complexity bound

Let G be a family of functions mapping from Z to [0, 1]. The general Rademacher
complexity bound presented in class was based on the analysis of the function Φ
defined by Φ(S) = supg∈G E[g]−ÊS [g] for any training sample S = (z1, . . . , zm)
of size m, with ÊS [g] = 1

m

∑m
i=1 g(zi). Instead, apply McDiarmid’s inequality to

Ψ defined by Ψ(S) = supg∈G E[g]− ÊS [g]− 2R̂S(G) and try to obtain a slighty
better generalization bound than the one obtained in class in terms of the empirical
Rademacher complexity.

Solution: Let S′ be a sample differing from S by one point, say zm. Then, since
a difference of suprema is upper bounded by the supremum of the differences, we
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can write

Ψ(S′)−Ψ(S) = sup
g∈G

(E[g]− ÊS′ [g])− sup
g∈G

(E[g]− ÊS [g]) +
2
m

E
σ

[
sup
g∈G

m∑
i=1

σig(zi)− sup
g∈G

m∑
i=1

σig(z′i)
]

≤ sup
g∈G

(E[g]− ÊS′ [g])− (E[g]− ÊS [g]) +
2
m

E
σ

[
sup
g∈G

m∑
i=1

σig(zi)−
m∑

i=1

σig(z′i)
]

= sup
g∈G

1
m

(g(zm)− g(z′m)) + 2 E
σ

[
1
m

sup
g∈G

σm(g(zm)− g(z′m))
]
≤ 3

m
.

Thus, by McDiarmid’s inequality, Pr[Ψ(S) − E[Ψ(S)] > ε] ≤ exp(−2
9mε2).

Thus, for any δ > 0, with probability at least 1− δ,

∀g ∈ G, Ψ(S)− E[Ψ(S) ≤ 3

√
log 1

δ

2m
. (2)

By definition, E[Ψ(S)] = E[Φ(S)]−2Rm(G). In class, we showed that E[Φ(S)] ≤

2Rm(G). Thus, with probability at least 1− δ, Ψ(S) ≤
√

log 1
δ

2m , that is

∀g ∈ G, E[g] ≤ ÊS [g] + 2R̂S(G) + 3

√
log 1

δ

2m
. (3)

C. VC-dimension of union of k intervals.

What is the VC-dimension of subsets of the real line formed by the union of k
intervals?

Solution:
The VC-dimension of this class is 2k. It is not hard to see that any 2k distinct

points on the real line can be shattered using k intervals; it suffices to shatter each
of the k pairs of consecutive points with an interval. Assume now that 2k + 1
distinct points x1 < · · · < x2k+1 are given. For any i ∈ [1, 2k + 1], label xi with
(−1)i+1, that is alternatively label points with 1 or −1. This leads to k + 1 points
labeled positively and requires 2k + 1 intervals to shatter the set, since no interval
can contain two consecutive points. Thus, no set of 2k + 1 points can be shattered
by k intervals, and the VC-dimension of the union of k intervals is 2k. ut

D. Generalization bound based on covering numbers.

Let H be a family of functions mapping X to a subset of real numbers Y ⊆ R. For
any ε > 0, the covering number N (H, ε) of H for the L∞ norm is the minimal
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k ∈ N such that H can be covered with k balls of radius ε, that is, there exists
{h1, . . . , hk} ⊆ H such that, for all h ∈ H , there exists i ≤ k with ‖h− hi‖∞ =
maxx∈X |h(x) − hi(x)| ≤ ε. In particular, when H is a compact set, a finite
covering can be extracted from a covering of H with balls of radius ε and thus
N (H, ε) is finite.

Covering numbers provide a measure of the complexity of a class of functions:
the larger the covering number, the richer is the family of functions. The objective
of this problem is to illustrate this by proving a learning bound in the case of the
squared loss. Let D denote a distribution over X × Y according to which labeled
examples are drawn. Then, the generalization error of h ∈ H for the squared loss
is defined by R(h) = E(x,y)∼D[(h(x) − y)2] and its empirical error for a labeled
sample S = ((x1, y1), . . . , (xm, ym)) by R̂(h) = 1

m

∑m
i=1(h(xi) − yi)2. We will

assume that H is bounded, that is there exists M > 0 such that |h(x) − y| ≤ M
for all (x, y) ∈ X × Y . The following is the generalization bound proven in this
problem:

Pr
S∼Dm

[
sup
h∈H

|R(h)− R̂(h)| ≥ ε
]
≤ N

(
H,

ε

8M

)
2 exp

(−mε2

2M4

)
. (4)

The proof is based on the following steps.

1. Let LS = R(h) − R̂(h), then show that for all h1, h2 ∈ H and any labeled
sample S, the following inequality holds:

|LS(h1)− LS(h2)| ≤ 4M‖h1 − h2‖∞ .

Solution: First split the term into two separate terms:

|LS(h1)− LS(h2)| ≤ |R(h1)−R(h2)|+ |R̂(h1)− R̂(h2)|

=
∣∣∣ E

x,y
[(h1(x)−y)2−(h2(x)−y)2]

∣∣∣+∣∣∣ 1
m

m∑
i=1

(h1(xi)−yi)2−(h2(xi)−yi)2
∣∣∣ .

Then, expanding the term

(h1(x)− y)2 − (h2(x)− y)2 = (h1(x)− h2(x))(h1 + h2 − 2y)
= (h1(x)− h2(x))

(
(h1 − y) + (h2 − y)

)
≤ ‖h1 − h2‖∞2M ,

allows us to bound both the empirical and true error, resulting in a total bound
of 4M‖h1 − h2‖∞. ut
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2. Assume that H can be covered by k subsets B1, . . . , Bk, that is H = B1 ∪
. . . ∪Bk. Then, show that, for any ε > 0, the following upper bound holds:

Pr
S∼Dm

[
sup
h∈H

|LS(h)| ≥ ε
]
≤

k∑
i=1

Pr
S∼Dm

[
sup
h∈Bi

|LS(h)| ≥ ε
]
.

Solution: This follows by splitting the event into the union of several smaller
events and then using the sum rule,

Pr
S

[
sup
h∈H

|LS(h)| ≥ ε
]

= Pr
S

[ k∨
i=1

sup
h∈Bi

|LS(h)| ≥ ε
]
≤

k∑
i=1

Pr
S

[
sup
h∈Bi

|LS(h)| ≥ ε
]
.

ut

3. Finally, let k = N (H, ε
8M ) and let B1, . . . , Bk be balls of radius ε/(8M)

centered at h1, . . . , hk covering H . Use part (a) to show that for all i ∈ [1, k],

Pr
S∼Dm

[
sup
h∈Bi

|LS(h)| ≥ ε
]
≤ Pr

S∼Dm

[
|LS(hi)| ≥

ε

2

]
,

and apply Hoeffding’s inequality to prove (4).

Solution: For any i let hi be the center of ball Bi with radius ε
8M . Note that

for any h ∈ H we have |LS(h)−LS(hi)| ≤ 4M‖h−hi‖∞ ≤ ε/2. Thus, if
for any h ∈ Bi we have |LS(h)| ≥ ε it must be the case that |LS(hi) ≥ ε2|,
which shows the inequality.

To complete the bound, we use Hoeffding’s inequality applied to the random
variables (h(xi)− yi)2/m ≤ M2/m, which guarantees

Pr
S

[
|LS(hi)| ≥

ε

2

]
≤ 2 exp

(−mε2

2M4

)
.

ut
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