A. Rademacher complexity - properties

Let H be a hypothesis set reduced to two functions: $H = \{h_{-1}, h_{+1}\}$ and let $S = (x_1, \ldots, x_m) \subseteq \mathcal{X}$ be a sample of size m.

1. Assume that h_{-1} is the constant function taking value -1 and h_{+1} the constant function taking the value $+1$. What is the VC-dimension d of H?

Upper bound the empirical Rademacher complexity $\mathcal{R}_S(H)$ (hint: express $\mathcal{R}_S(H)$ in terms of the absolute value of a sum of Rademacher variables and apply Jensen’s inequality) and compare your bound with $\sqrt{d/m}$.

Solution: $\text{VCdim}(H) = 1$ since H can shatter one point and clearly at most one. Observe that

$$\sup_{h \in H} \sum_{i=1}^m \sigma_i h(x_i) = \sup_{h \in H} \left(\sum_{i=1}^m \sigma_i \right) h(x_1) = \left| \sum_{i=1}^m \sigma_i \right| . \quad (1)$$

Thus, by Jensen’s inequality,

$$\mathcal{R}_S(H) = \frac{1}{m} \mathbb{E}_{\sigma} \left[\left| \sum_{i=1}^m \sigma_i \right| \right]$$

$$\leq \frac{1}{m} \left[\mathbb{E}_{\sigma} \left(\sum_{i=1}^m \sigma_i^2 \right) \right]^{1/2}$$

$$= \frac{1}{m} \left[\mathbb{E}_{\sigma} \left(\sum_{i=1}^m \sigma_i^2 \right) \right]^{1/2} \quad (\text{E}[\sigma_i\sigma_j] = 0 \text{ for } i \neq j)$$

$$= \frac{1}{\sqrt{m}} .$$

By the Khintchine inequality, the upper bound is tight modulo the constant $1/\sqrt{2}$. The upper bound coincides with $\sqrt{d/m}$. \qed
2. Assume that h_{-1} is the constant function taking value -1 and h_{+1} the function taking value -1 everywhere except at x_1 where it takes the value $+1$. What is the VC-dimension d of H? Compute the empirical Rademacher complexity $\mathfrak{R}_S(H)$.

Solution: $\text{VCdim}(H) = 1$ since H can shatter x_1 and clearly at most one point. By definition,

$$
\mathfrak{R}_S(H) = \frac{1}{m} \mathbb{E} \left[\sup_{h \in H} \sum_{i=1}^{m} \sigma_i h(x_i) \right]
$$

$$
= \frac{1}{m} \mathbb{E} \left[\sup_{h \in H} \sigma_1 h(x_1) - \sum_{i=2}^{m} \sigma_i \right]
$$

$$
= \frac{1}{m} \mathbb{E} \left[\sup_{h \in H} \sigma_1 h(x_1) \right] \quad (\mathbb{E} [\sigma_1] = 0)
$$

$$
= \frac{1}{m} \mathbb{E} \left[1 \right] = \frac{1}{m}.
$$

Here $\mathfrak{R}_S(H)$ is a clearly more favorable quantity than $\sqrt{d/m} = \sqrt{1/m}$.

B. Rademacher complexity bound

Let G be a family of functions mapping from Z to $[0,1]$. The general Rademacher complexity bound presented in class was based on the analysis of the function Φ defined by $\Phi(S) = \sup_{g \in G} E[g] - \tilde{E}_S[g]$ for any training sample $S = (z_1, \ldots, z_m)$ of size m, with $\tilde{E}_S[g] = \frac{1}{m} \sum_{i=1}^{m} g(z_i)$. Instead, apply McDiarmid’s inequality to Ψ defined by $\Psi(S) = \sup_{g \in G} E[g] - \tilde{E}_S[g] - 2\mathfrak{R}_S(G)$ and try to obtain a slightly better generalization bound than the one obtained in class in terms of the empirical Rademacher complexity.

Solution: Let S' be a sample differing from S by one point, say z_m. Then, since a difference of suprema is upper bounded by the supremum of the differences, we
can write

\[
\Psi(S') - \Psi(S) = \sup_{g \in G} (E[g] - \widehat{E}_S[g]) - \sup_{g \in G} (E[g] - \widehat{E}_S'[g]) + \frac{2}{m} E \sigma \left(\sup_{ g \in G } \sum_{ i = 1 }^{ m } \sigma_i g(z_i) - \sup_{ g \in G } \sum_{ i = 1 }^{ m } \sigma_i g(z_i') \right)
\]

\[
\leq \sup_{ g \in G } (E[g] - \widehat{E}_S'[g]) - (E[g] - \widehat{E}_S[g]) + \frac{2}{m} E \sigma \left(\sup_{ g \in G } \sum_{ i = 1 }^{ m } \sigma_i g(z_i) - \sum_{ i = 1 }^{ m } \sigma_i g(z_i') \right)
\]

\[
= \sup_{ g \in G } \frac{1}{m} (g(z_m) - g(z_m')) + 2 E \sigma \left(\frac{1}{m} \sup_{ g \in G } \sigma_m (g(z_m) - g(z_m')) \right) \leq \frac{3}{m}.
\]

Thus, by McDiarmid’s inequality, \(\Pr[\Psi(S) - E[\Psi(S)] > \epsilon] \leq \exp(-\frac{2}{9}m\epsilon^2)\).

Thus, for any \(\delta > 0\), with probability at least \(1 - \delta\),

\[
\forall g \in G, \Psi(S) - E[\Psi(S)] \leq 3 \sqrt{\frac{\log \frac{1}{\delta}}{2m}}.
\]

By definition, \(E[\Psi(S)] = E[\Phi(S)] - 2R_m(G)\). In class, we showed that \(E[\Phi(S)] \leq 2R_m(G)\). Thus, with probability at least \(1 - \delta\), \(\Psi(S) \leq \sqrt{\frac{\log \frac{1}{\delta}}{2m}}\), that is

\[
\forall g \in G, E[g] \leq \widehat{E}_S[g] + 2\tilde{R}_S(G) + 3 \sqrt{\frac{\log \frac{1}{\delta}}{2m}}.
\]

C. VC-dimension of union of \(k\) intervals.

What is the VC-dimension of subsets of the real line formed by the union of \(k\) intervals?

\textbf{Solution:}

The VC-dimension of this class is \(2k\). It is not hard to see that any \(2k\) distinct points on the real line can be shattered using \(k\) intervals; it suffices to shatter each of the \(k\) pairs of consecutive points with an interval. Assume now that \(2k + 1\) distinct points \(x_1 < \cdots < x_{2k+1}\) are given. For any \(i \in [1, 2k + 1]\), label \(x_i\) with \((-1)^{i+1}\), that is alternatively label points with 1 or -1. This leads to \(k + 1\) points labeled positively and requires \(2k + 1\) intervals to shatter the set, since no interval can contain two consecutive points. Thus, no set of \(2k + 1\) points can be shattered by \(k\) intervals, and the VC-dimension of the union of \(k\) intervals is \(2k\). \(\square\)

D. Generalization bound based on covering numbers.

Let \(H\) be a family of functions mapping \(X\) to a subset of real numbers \(Y \subseteq \mathbb{R}\). For any \(\epsilon > 0\), the covering number \(\mathcal{N}(H, \epsilon)\) of \(H\) for the \(L_\infty\) norm is the minimal
Let $k \in \mathbb{N}$ such that H can be covered with k balls of radius ϵ, that is, there exists \{h_1, \ldots, h_k\} \subseteq H$ such that, for all $h \in H$, there exists $i \leq k$ with $\|h - h_i\|_\infty = \max_{x \in \mathcal{X}} |h(x) - h_i(x)| \leq \epsilon$. In particular, when H is a compact set, a finite covering can be extracted from a covering of H with balls of radius ϵ and thus $\mathcal{N}(H, \epsilon)$ is finite.

Covering numbers provide a measure of the complexity of a class of functions: the larger the covering number, the richer is the family of functions. The objective of this problem is to illustrate this by proving a learning bound in the case of the squared loss. Let D denote a distribution over $\mathcal{X} \times \mathcal{Y}$ according to which labeled examples are drawn. Then, the generalization error of $h \in H$ for the squared loss is defined by $R(h) = \mathbb{E}_{(x,y) \sim D}[(h(x) - y)^2]$ and its empirical error for a labeled sample $S = ((x_1, y_1), \ldots, (x_m, y_m))$ by $\hat{R}(h) = \frac{1}{m} \sum_{i=1}^{m} (h(x_i) - y_i)^2$. We will assume that H is bounded, that is there exists $M > 0$ such that $|h(x) - y| \leq M$ for all $(x, y) \in \mathcal{X} \times \mathcal{Y}$. The following is the generalization bound proven in this problem:

$$\Pr_{S \sim D^m} \left[\sup_{h \in H} |R(h) - \hat{R}(h)| \geq \epsilon \right] \leq \mathcal{N} \left(H, \frac{\epsilon}{8M} \right) 2 \exp \left(\frac{-m\epsilon^2}{2M^4} \right). \tag{4}$$

The proof is based on the following steps.

1. Let $L_S = R(h) - \hat{R}(h)$, then show that for all $h_1, h_2 \in H$ and any labeled sample S, the following inequality holds:

 $$|L_S(h_1) - L_S(h_2)| \leq 4M \|h_1 - h_2\|_\infty.$$

Solution: First split the term into two separate terms:

$$|L_S(h_1) - L_S(h_2)| \leq |R(h_1) - R(h_2)| + |\hat{R}(h_1) - \hat{R}(h_2)|$$

$$= \left| \mathbb{E}_{x,y} [(h_1(x) - y)^2 - (h_2(x) - y)^2] \right| + \left| \frac{1}{m} \sum_{i=1}^{m} (h_1(x_i) - y_i)^2 - (h_2(x_i) - y_i)^2 \right|.$$

Then, expanding the term

$$(h_1(x) - y)^2 - (h_2(x) - y)^2 = (h_1(x) - h_2(x))(h_1 + h_2 - 2y)$$

$$= (h_1(x) - h_2(x))(h_1 - y) + (h_2(x) - y) \leq \|h_1 - h_2\|_\infty 2M,$$

allows us to bound both the empirical and true error, resulting in a total bound of $4M \|h_1 - h_2\|_\infty$.

2. Assume that H can be covered by k subsets B_1, \ldots, B_k, that is $H = B_1 \cup \ldots \cup B_k$. Then, show that, for any $\epsilon > 0$, the following upper bound holds:

$$\Pr_{S \sim D^m} \left[\sup_{h \in H} |L_S(h)| \geq \epsilon \right] \leq \sum_{i=1}^{k} \Pr_{S \sim D^m} \left[\sup_{h \in B_i} |L_S(h)| \geq \epsilon \right].$$

Solution: This follows by splitting the event into the union of several smaller events and then using the sum rule,

$$\Pr_{S} \left[\sup_{h \in H} |L_S(h)| \geq \epsilon \right] = \Pr_{S} \left[\bigvee_{i=1}^{k} \sup_{h \in B_i} |L_S(h)| \geq \epsilon \right] \leq \sum_{i=1}^{k} \Pr_{S} \left[\sup_{h \in B_i} |L_S(h)| \geq \epsilon \right].$$

\[\square\]

3. Finally, let $k = N(H, \frac{\epsilon}{8M})$ and let B_1, \ldots, B_k be balls of radius $\epsilon/(8M)$ centered at h_1, \ldots, h_k covering H. Use part (a) to show that for all $i \in [1,k],$

$$\Pr_{S \sim D^m} \left[\sup_{h \in B_i} |L_S(h)| \geq \epsilon \right] \leq \Pr_{S \sim D^m} \left[|L_S(h_i)| \geq \frac{\epsilon}{2} \right],$$

and apply Hoeffding’s inequality to prove (4).

Solution: For any i let h_i be the center of ball B_i with radius $\frac{\epsilon}{8M}$. Note that for any $h \in H$ we have $|L_S(h) - L_S(h_i)| \leq 4M \|h - h_i\|_{\infty} \leq \epsilon/2$. Thus, if for any $h \in B_i$ we have $|L_S(h)| \geq \epsilon$ it must be the case that $|L_S(h_i)| \geq \epsilon/2$, which shows the inequality.

To complete the bound, we use Hoeffding’s inequality applied to the random variables $(h(x_i) - y_i)^2/m \leq M^2/m$, which guarantees

$$\Pr_{S} \left[|L_S(h_i)| \geq \frac{\epsilon}{2} \right] \leq 2 \exp \left(\frac{-m\epsilon^2}{2M^4} \right).$$

\[\square\]