A. Probability tools

1. Let \(f : (0, +\infty) \rightarrow \mathbb{R}_+ \) be a function admitting an inverse \(f^{-1} \) and let \(X \) be a random variable. Show that if for any \(t > 0 \), \(\Pr[X > t] \leq f(t) \), then, for any \(\delta > 0 \), with probability at least \(1 - \delta \), \(X \leq f^{-1}(\delta) \).

 Solution: For any \(\delta > 0 \), let \(t = f^{-1}(\delta) \). Plugging this in \(\Pr[X > t] \leq f(t) \) yields \(\Pr[X > f^{-1}(\delta)] \leq \delta \), that is \(\Pr[X \leq f^{-1}(\delta)] \geq 1 - \delta \).

2. Let \(X \) be a discrete random variable taking non-negative integer values. Show that \(\mathbb{E}[X] = \sum_{n \geq 1} \Pr[X \geq n] \) (hint: rewrite \(\Pr[X = n] \) as \(\Pr[X \geq n] - \Pr[X \geq n + 1] \)).

 Solution: By definition of expectation and using the hint, we can write
 \[
 \mathbb{E}[X] = \sum_{n \geq 0} n \Pr[X = n] = \sum_{n \geq 1} n (\Pr[X \geq n] - \Pr[X \geq n + 1]).
 \]
 Note that in this sum, for \(n \geq 1 \), \(\Pr[X \geq n] \) is added \(n \) times and subtracted \(n - 1 \) times, thus \(\mathbb{E}[X] = \sum_{n \geq 1} \Pr[X \geq n] \).
 More generally, by definition of the Lebesgue integral, for any non-negative random variable \(X \), the following identity holds:
 \[
 \mathbb{E}[X] = \int_0^{+\infty} \Pr[X \geq t] \, dt.
 \]

B. Label bias

1. Let \(D \) be a distribution over \(\mathcal{X} \) and let \(f : \mathcal{X} \times \{-1, +1\} \rightarrow \) be a labeling function. Suppose we wish to find a good approximation of the label bias of the distribution \(D \), that is of \(p_+ \) defined by:
 \[
 p_+ = \Pr_{x \sim D}[f(x) = +1].
 \]
Let S be a finite labeled sample of size m drawn i.i.d. according to D. Use S to derive an estimate \hat{p}_+ of p_+. Show that for any $\delta > 0$, with probability at least $1 - \delta$, $|p_+ - \hat{p}_+| \leq \sqrt{\frac{\log(2/\delta)}{2m}}$ (carefully justify all steps).

Solution: Let \hat{p}_+ be the fraction of positively labeled points in $S = (x_1, \ldots, x_m)$:

$$\hat{p}_+ = \frac{1}{m} \sum_{i=1}^{m} 1_{f(x_i)=+1}$$

Since the points are drawn i.i.d.,

$$E[\hat{p}_+] = \frac{1}{m} \sum_{i=1}^{m} E_{S \sim D^m}[1_{f(x_i)=+1}] = E_{S \sim D^m}[1_{f(x_1)=+1}] = E_{x \sim D}[1_{f(x)=+1}] = p_+.$$

Thus, by Hoeffding’s inequality, for any $\epsilon > 0$,

$$\Pr[|p_+ - \hat{p}_+| > \epsilon] \leq 2e^{-2m\epsilon^2}.$$

Setting δ to match the right-hand side yields the result. \(\square\)

C. Learning in the presence of noise

1. In Lecture 2, we showed that the concept class of axis-aligned rectangles is PAC-learnable. Consider now the case where the training points received by the learner are subject to the following noise: points negatively labeled are unaffected by noise but the label of a positive training point is randomly flipped to negative with probability $\eta \in (0, \frac{1}{2})$. The exact value of the noise rate η is not known to the learner but an upper bound η' is supplied to him with $\eta \leq \eta' < 1/2$. Show that the algorithm described in class returning the tightest rectangle containing positive points can still PAC-learn axis-aligned rectangles in the presence of this noise. To do so, you can proceed using the following steps:

 (a) Using the notation of the lecture slides, assume that $\Pr[R] > \epsilon$. Suppose that $error(R') > \epsilon$. Give an upper bound on the probability that R' misses a region r_j, $j \in [1, 4]$ in terms of ϵ and η'?

 Solution: The probability that R' misses region r_j is the product of the probability p for each point x_i of the training sample to either not fall
in r_j or be positive and fall in r_j with the label flipped to negative due to noise.

\[
p = \Pr[x \notin r_j \lor (x \in r_j \land x \text{ positive} \land \text{label of } x \text{ flipped})]
= \Pr[x \notin r_j \lor (x \in r_j \land \text{label of } x \text{ flipped})]
= \Pr[x \notin r_j] + \Pr[(x \in r_j \land \text{label of } x \text{ flipped})]
= (1 - \Pr[x \in r_j]) + \eta \Pr[x \in r_j]
= (1 - \eta)(1 - \Pr[x \notin r_j]) + \eta
\leq (1 - \eta)(1 - \epsilon/4) + \eta
= (1 - \epsilon/4) + \eta \epsilon/4 \leq 1 - \epsilon(1 - \eta')/4.
\]

(b) Use that to give an upper bound on $\Pr[error(R') > \epsilon]$ in terms of ϵ and η' and conclude by giving a sample complexity bound.

Solution: The probability that $\Pr[error(R') > \epsilon]$ is upper bounded by the probability that R' misses at least one region r_j. Thus, by the union bound,

\[
\Pr[error(R') > \epsilon] \leq 4 \left(1 - \epsilon(1 - \eta')/4\right)^m \leq 4e^{-m\epsilon(1 - \eta')/4}.
\]

Setting δ to match the upper bound leads to the following: with probability at least $1 - \delta$, for $m \geq \frac{4}{(1-\eta')\epsilon} \log \frac{4}{\delta}$, $error(R') \leq \epsilon$.

2. [Bonus question] In this section, we will seek a more general result. We consider a finite hypothesis set H, assume that the target concept is in H, and adopt the following noise model: the label of a training point received by the learner is randomly changed with probability $\eta \in (0, 1/2)$. The exact value of the noise rate η is not known to the learner but an upper bound η' is supplied to him with $\eta \leq \eta' < 1/2$.

(a) For any $h \in H$, let $d(h)$ denote the probability that the label of a training point received by the learner disagrees with the one given by h. Let h^* be the target hypothesis, show that $d(h^*) = \eta$.

Solution: The probability that the label of a point be incorrect is η. A label is incorrect iff it differs from the label given by the target h^*. \hfill \Box

(b) More generally, show that for any $h \in H$, $d(h) = \eta + (1 - 2\eta) error(h)$, where $error(h)$ denotes the generalization error of h. \hfill \Box
Solution: The label of a point disagrees with the one given by \(h \) either because its label is correct (probability \(1 - \eta \)) and \(h \) misclassifies that point (probability \(\text{error}(h) \)), or because its label is incorrect (probability \(\eta \)) and \(h \) classifies it correctly (probability \(1 - \text{error}(h) \)). Since these two events are disjoint, the probability of their union is the sum of the probability and

\[
d(h) = (1 - \eta)\text{error}(h) + \eta(1 - \text{error}(h)) \\
= \eta + (1 - 2\eta)\text{error}(h).
\]

\(\square \)

(c) Fix \(\epsilon > 0 \) for this and all the following questions. Use the previous questions to show that if \(\text{error}(h) > \epsilon \), then \(d(h) - d(h^*) \geq \epsilon' \), where \(\epsilon' = \epsilon(1 - 2\eta') \).

Solution: In view of the previous question, if \(\text{error}(h) > \epsilon \),

\[
d(h) = \eta + (1 - 2\eta)\text{error}(h) \\
\geq \eta + (1 - 2\eta)\epsilon \\
\geq \eta + (1 - 2\eta')\epsilon \\
= d(h^*) + (1 - 2\eta')\epsilon,
\]

where we used \(d(h^*) = \eta \). \(\square \)

(d) For any hypothesis \(h \in H \) and sample \(S \) of size \(m \), let \(\hat{d}(h) \) denote the fraction of the points in \(S \) whose labels disagree with those given by \(h \).

We will consider the algorithm \(L \) which, after receiving \(S \), returns the hypothesis \(h_S \) with the smallest number of disagreements (thus \(\hat{d}(h_S) \) is minimal). To show PAC-learning for \(L \), we will show that for any \(h \), if \(\text{error}(h) > \epsilon \), then with high probability \(\hat{d}(h) \geq \epsilon' \). First, show that for any \(\delta > 0 \), with probability at least \(1 - \delta/2 \), for \(m \geq \frac{2}{\epsilon^2} \log \frac{2}{\delta} \), the following holds:

\[
\hat{d}(h^*) - \hat{d}(h) \leq \epsilon'/2
\]

Solution: By Hoeffding’s inequality \(\Pr[\hat{d}(h^*) - \hat{d}(h) > \epsilon'/2] \leq e^{-m\epsilon'^2/2} \). Setting \(\delta/2 \) to match the right-hand side yields the result. \(\square \)

(e) Second, show that for any \(\delta > 0 \), with probability at least \(1 - \delta/2 \), for \(m \geq \frac{2}{\epsilon^2}(\log |H| + \log \frac{2}{\delta}) \), the following holds for all \(h \in H \):

\[
d(h) - \hat{d}(h) \leq \epsilon'/2
\]

4
Solution: By the union bound and Hoeffding’s inequality $\Pr[\exists h: d(h) - \hat{d}(h) > \epsilon'/2] \leq |H|e^{-m\epsilon'^2/2}$. Setting $\delta/2$ to match the right-hand side yields the result. \hfill \Box

(f) Finally, show that for any $\delta > 0$, with probability at least $1 - \delta$, for $m \geq 2\frac{\epsilon^2}{\epsilon'}(\log |H| + \log \frac{2}{\delta})$, the following holds for all $h \in H$ with $\text{error}(h) > \epsilon$:

$$\hat{d}(h) - \hat{d}(h^*) \geq 0.$$

(hint: use $\hat{d}(h) - \hat{d}(h^*) = [\hat{d}(h) - d(h)] + [d(h) - d(h^*)] + [d(h^*) - \hat{d}(h^*)]$ and use previous questions to lower bound each of these three terms).

Solution: By the union bound, for any $\delta > 0$, with probability at least $1 - \delta$, for $m \geq 2\frac{\epsilon^2}{\epsilon'}(\log |H| + \log \frac{2}{\delta})$, both inequalities of the previous two questions hold, the previous one for all $h \in H$. Thus, using the equality of the hint, with probability at least $1 - \delta$, for $m \geq 2\frac{\epsilon^2}{\epsilon'}(\log |H| + \log \frac{2}{\delta})$, the following holds for all $h \in H$ with $\text{error}(h) > \epsilon$:

$$\hat{d}(h) - \hat{d}(h^*) = [\hat{d}(h) - d(h)] + [d(h) - d(h^*)] + [d(h^*) - \hat{d}(h^*)] \geq -\epsilon'/2 + \epsilon' - \epsilon'/2 = 0,$$

and thus such hypotheses h are not selected by L since they do not admit a minimal $\hat{d}(h)$.

This shows that algorithm L can be used for PAC-learning in the presence of the noise described and in the consistent case where the target concept is in H. Nevertheless, the computational complexity of L is in general not polynomial. In general, the problem of finding the hypothesis with minimal $\hat{d}(h)$ is NP-complete. \hfill \Box