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A. Kernels

1. Show that for all λ > 0, the kernel K defined on R× R by

K(x, x′) = exp
(
−λ[sin(x′ − x)]2

)
, (1)

for all x, x′ ∈ R is PDS (hint: you could seek to rewrite [sin(x′−x)]2 as the
square of the norm of the difference of two vectors).

For all x, x′ ∈ R,

[sin(x′ − x)]2 = 1− [cos(x′ − x)]2

= 1− [cos x′ cos x + sinx′ sinx]2

= 1− (u(x′) · u(x))2,

where u(x) = (cos x, sinx)> for all x ∈ X . Observe that ‖u(x)‖ = 1 for all x ∈
X . Thus, [sin(x′ − x)]2 = 1

2‖u(x′) − u(x)‖2 and K(x, x′) = e−
λ
2 ‖u(x′)−u(x)‖2 .

Since the Gaussian kernel is known to be PDS, K is also PDS (the fact that Gaussian
kernels are PDS can be shown easily by observing that they are the normalized
kernels associated to the kernel obtained by composing exp with standard inner
products).

2. Let Φ: X → H be a feature mapping such that the dimension N of H is
very high and let K : X ×X → R be a PDS kernel defined by

K(x, x′) = E
i∼D

[
[Φ(x)]i[Φ(x′)]i

]
, (2)

where [Φ(x)]i is the ith componnent of Φ(x) and similarly for Φ(x′) and
where D is a distribution over the indices i. We shall assume that |[Φ(x)]i| ≤
R for all x ∈ X and i ∈ [1, N ].

Suppose that to compute K(x, x′) no other method is available than comput-
ing the inner product (2), which would require O(N) time. One idea in that
case is instead to compute an approximation of that kernel based on random
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selection of a subset I of the N components of Φ(x) and Φ(x′) according to
D, that is:

K ′(x, x′) =
1
n

∑
i∈I

[Φ(x)]i[Φ(x′)]i, (3)

where |I| = n.

(a) Fix x and x′ in X . Prove that

Pr
I∼Dn

[|K(x, x′)−K ′(x, x′)| > ε] ≤ 2e
−nε2

2R4 . (4)

(hint: use McDiarmid’s inequality).
By definition of K ′, for all x, x′ ∈ X , ED[K ′(x, x′)] = K(x, x′). Replacing
one indice i ∈ I by i′ affects K ′(x, x′) by at most 1

n (|[Φ(x)]i[Φ(x′)]i| +
|[Φ(x)]i′ [Φ(x′)]i′ |) ≤ 2R2

n . The result thus follows directly McDiarmid’s
inequality.

(b) Let K and K′ be the kernel matrices associated to K and K ′. Show
that for any ε, δ > 0, for n > 2R4

ε2
log m(m+1)

δ , with probability at least
1− δ, |K′

ij −Kij | ≤ ε for all i, j ∈ [1,m].
Since K and K′ are symmetric, it suffices to prove the statement for the entries
of these matrices that are above the diagonal. By the union bound and the
previous question, the following holds:

Pr
I∼Dn

[∃i, j ∈ [1,m] : |K′
ij−Kij | > ε] ≤ 2

m(m + 1)
2

e
−nε2

2R4 = m(m+1)e
−nε2

2R4 .

Setting δ > 0 to match the upper bound leads directly to the inequality
claimed.

B. Boosting

1. Let corr(x,x′) denote the inner product (or unnormalized correlation) of two
vectors x and x′. Prove that the distribution vector (Dt+1(1), . . . , Dt+1(m))
defined by AdaBoost and the vector of components yiht(xi) are uncorre-
lated.
By definition, the unnormalized correlation is given by

m∑
i=1

Dt+1(i)yiht(xi) =
m∑

i=1

Dt(i)e−αtyiht(xi)yiht(xi)
Zt

=
1
Zt

dZt

dαt
, (5)

since Zt =
∑m

i=1 Dt(i)e−αtyiht(xi). Recall from lecture slides that αt minimizes
Zt, thus dZt

dαt
= 0. This shows that the distribution at round t + 1 and the vector of

margins at round t are uncorrelated.
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2. Fix ε ∈ (0, 1/2). Let the training sample be defined by m points in the plane
with m

4 negative points all at coordinate (1, 1), another set of m
4 negative

points all at coordinate (−1,−1), m(1−ε)
4 positive points all at coordinate

(1,−1), and m(1+ε)
4 positive points all at coordinate (−1,+1). Describe the

behavior of AdaBoost when run on this sample using boosting stumps, in
particular, give the solution the algorithm returns after T rounds.

It is not hard to see that the base hypotheses in this problem can be defined to be
threshold functions based on the first or second axis, or constant functions (horizon-
tal or vertical thresholds outside the convex hull of all the points).

The hypotheses selected by AdaBoost are therefore chosen from this set. It can
be shown that the hypotheses selected in two consecutive rounds of AdaBoost are
distinct. Furthermore, ht and −ht cannot be selected in consecutive rounds since
misclassified and correctly classified points by ht are assigned the same distribution
mass (see lecture slides). Thus, at each round a distinct hypothesis is chosen. The
points at coordinate (−1,−1) are misclassified by all these base hypothesis.

The algorithm should be stopped when the best εt found is 1/2. It can be shown
then that the error of the final classifier returned on the training set is 1

4 (1− ε) since
it misclassifies exactly the points at at coordinate (+1,−1).
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