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This is a shorter assignment to leave you more time to work on your project.

Boosting

[60 points]

Suppose we simplify AdaBoost by setting the parameter αt to a fix value
αt = α > 0, independent of the boosting round t.

1. [20 points] Let γ be such that (1
2 − ǫt) ≥ γ > 0 where ǫt is defined as

in class. Find the best value of α as a function of γ by analyzing the
empirical error.

As in class, we can show that

êrror(H) ≤

T
∏

t=1

Zt, (1)

and that
Zt = (1 − ǫt)e

−α + ǫte
α. (2)

By definition of γ and the fact that eα − e−α > 0 for all α > 0,

Zt = ǫt(e
α
− e−α) + e−α (3)

≤ (1 − γ)(eα
− e−α) + e−α (4)

= (
1

2
− γ)eα + (

1

2
+ γ)e−α = u(α). (5)

u(α) is minimized for

(
1

2
− γ)eα = (

1

2
+ γ)e−α, (6)

that is for

α =
1

2
log

1
2 + γ
1
2 − γ

. (7)
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Tighter bounds on the product of the Zts can lead to better values for
α.

2. [20 points] For that value of α, does the algorithm assign the same
probability mass to correctly classified and misclassified examples at
each round? Which set is assigned a higher probability mass?

As in the proof given in class, at round t, the probability mass assigned
to correctly classified points is p+ = (1 − ǫt)e

−α and the probability
mass assigned to the misclassified points is p− = ǫte

α. Thus,

p−

p+
=

ǫt

1 − ǫt

1
2 + γ
1
2 − γ

≤

1
2 − γ
1
2 + γ

1
2 + γ
1
2 − γ

= 1. (8)

This contrasts with AdaBoost’s property.

3. [20 points] Using the previous value of α, give a bound on the empirical
error of the algorithm that depends only on γ and the number of rounds
of boosting T .

Zt ≤ (
1

2
− γ)eα + (

1

2
+ γ)e−α (9)

= (
1

2
− γ)

√

1
2 + γ
1
2 − γ

+ (
1

2
+ γ)

√

1
2 − γ
1
2 + γ

(10)

= 2

√

(
1

2
+ γ)(

1

2
− γ). (11)

Thus, the empirical error can be bounded as follows:

êrror(H) ≤

T
∏

t=1

Zt (12)

≤ [2

√

(
1

2
+ γ)(

1

2
− γ)]T (13)

= (1 − 4γ2)T/2 (14)

≤ e−2γ2T . (15)

4. [20 points] Using the previous bound, show that for T > log m
2γ2 , the

resulting hypothesis is consistent with the sample of size m.
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If êrror(H) = 1
m

∑m
i=1 1yif(xi)≤0 ≤

1
m , then clearly êrror(H) = 0.

Using the bound obtained in the previous question, if e−2γ2T < 1
m , the

empirical error is zero. This can be rewritten as

T >
log m

2γ2
. (16)

5. [20 points] Let s be the VC dimension of the base learners used.
Give a bound on the generalization error of the consistent hypoth-

esis obtained after T =
⌊

log m
2γ2

⌋

+ 1 rounds of boosting (hint : you

can use the fact that the VC dimension of the family of functions
{

sgn(
∑T

t=1 αtht) : αt ∈ R

}

is bounded by 2(s + 1)T log2(eT )). Sup-

pose now that γ varies with m. Based on the bound derived, what can

you say if γ(m) = O(
√

log m
m )?

Using the bound proved in class for the consistent case,

Pr[errorD(H) > ǫ] ≤ 2ΠC(2m)2−
mǫ

2 ≤ 2(
2em

d
)d2−

mǫ

2 . (17)

Setting the right-hand side to δ, with probability at least 1 − δ, the
following bound holds for that consistent hypothesis:

errorD(H) ≤
2

m

(

d log2

2em

d
+ log2

2

δ

)

, (18)

with d = 2(s + 1)T log2(eT ) and T =
⌊

log m
2γ2

⌋

+ 1.

The bound is vacuous for γ(m) = O(
√

log m
m ). This could suggest

overfitting.
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