A. Bounds on VC dimension

[30 points]

1. [15 points] Show that the VC dimension of the set of all closed balls in \(\mathbb{R}^n \), that is sets of the form \(\{ x \in \mathbb{R}^n : \|x - x_0\|^2 \leq r \} \) for some \(x_0 \in \mathbb{R}^n \) and \(r \geq 0 \) is less than or equal to \(n + 2 \).

Let \(B(a, r) \) be the ball of radius \(r \) centered at \(a \in \mathbb{R}^n \). Then \(x \in B(a, r) \) iff

\[
\sum_{i=1}^{n} \|x_i\|^2 - 2 \sum_{i=1}^{n} a_i x_i + \sum_{i=1}^{n} a_i^2 - r \leq 0, \tag{1}
\]

which is equivalent to

\[
\langle W, X \rangle + B \leq 0, \tag{2}
\]

with

\[
W = \begin{bmatrix}
1 \\
-2a_1 \\
\vdots \\
-2a_n
\end{bmatrix},
X = \begin{bmatrix}
\sum_{i=1}^{n} \|x_i\|^2 \\
x_1 \\
\vdots \\
x_n
\end{bmatrix}, \text{ and } B = \sum_{i=1}^{n} a_i^2 - r.
\]

The VC dimension of closed balls in \(\mathbb{R}^n \) is thus at most equal to the VC dimension of hyperplanes in \(\mathbb{R}^{n+1} \), that is \(n + 2 \).

2. [15 points] Determine the VC dimension of the subsets of the real line formed by the union of \(k \) intervals.

It is not hard to see that any \(2k \) distinct points on the real line can be shattered using \(k \) intervals: it suffices to shatter each of the \(k \) pairs of consecutive points with an interval. Assume now that \(2k + 1 \) distinct points \(x_1 < \cdots < x_{2k+1} \) are given. For any \(i \in [1, 2k+1] \), label \(x_i \) with \((-1)^{i+1}\), that is alternatively label points with 1 or \(-1\). This leads to \(k + 1 \) points labeled positively and requires \(2k + 1 \) intervals to shatter the set since no interval can contain two consecutive points. Thus, no set of \(2k + 1 \) points can be shattered by \(k \) intervals and the VC dimension of the union of \(k \) intervals is \(2k \).
B. VC dimension of intersection concepts

[30 points]

1. [15 points] Let C_1 and C_2 be two concept classes. Show that for any concept class $C = \{c_1 \cap c_2 : c_1 \in C_1, c_2 \in C_2\}$,
\[\Pi_C(m) \leq \Pi_{C_1}(m) \Pi_{C_2}(m). \] (3)

Fix a set X of m points. Let $\{Y_1, \ldots, Y_k\}$ be the set of intersections of the concepts of C_1 with X. By definition of $\Pi_{C_1}(X)$, $k \leq \Pi_{C_1}(m)$. By definition of $\Pi_{C_2}(Y_i)$, the intersection of the concepts of C_2 with Y_i are at most $\Pi_{C_2}(Y_i) \leq \Pi_{C_2}(m)$. Thus, the number of sets intersections of concepts of C with X is at most
\[k \Pi_{C_2}(Y_i) \leq \Pi_{C_1}(m) \Pi_{C_2}(m). \] (4)

2. [15 points] Let C be a concept class with VC dimension d and let C_s be the concept class formed by all intersections of s concepts from C, $s \geq 1$. Show that the VC dimension of C_s is bounded by $2ds \log_2(3s)$ (Hint: show that $\log_2(3x) < 9x/(2e)$ for any $x \geq 2$).

In view of the result proved in the previous question, $\Pi_{C_1}(m) \leq (\Pi_{C_1}(m))^s$. By Sauer’s lemma, this implies
\[\Pi_{C_s}(m) \leq \left(\frac{em}{d}\right)^{sd}. \] (5)

If $(\frac{em}{d})^{sd} < 2^m$, then the VC dimension of C_s is less than m. Thus, it suffices to show this inequality holds with $m = 2ds \log_2(3s)$. Plugging in that value for m and taking the \log_2 yield:
\[ds \log_2 (2es \log_2 (3s)) < 2ds \log_2 (3s) \] (6)
\[\Leftrightarrow \log_2 (2es \log_2 (3s)) < 2\log_2 (3s) = \log_2 (9s^2) \] (7)
\[\Leftrightarrow 2es \log_2 (3s) < 9s^2 \] (8)
\[\Leftrightarrow \log_2 (3s) < \frac{9s}{2e} \] (9)

This last inequality holds for $s = 2$: $\log_2 (6) \approx 2.6 < 9/(2e) \approx 3.3$. Since the functions corresponding to the left-hand-side grows more slowly than the one corresponding to the right-hand-side (compare derivatives for example), this implies that the inequality holds for all $s \geq 2$.

2
C. Infinite VC dimension

[65 points]

1. [15 points] Show that if a concept class C has infinite VC dimension, then it is not PAC-learnable.

By a theorem of (Ehrenfeucht et al., 1988) presented in class, any algorithm for PAC-learning a concept class C of VC dimension d with accuracy $1 - \epsilon$ and confidence $1 - \delta$ must use a sample size $m = \Omega(\frac{1}{\epsilon} \log \frac{1}{\delta} + \frac{d}{\epsilon})$. For an infinite VC-dimension, this lower bound requires an infinite number of points and thus implies that PAC-learning is not possible.

2. [50 points] In the standard PAC-learning scenario, the learning algorithm receives all examples first and then computes its hypothesis. Within that setting, PAC-learning of concept classes with infinite dimension is not possible as seen in the previous question.

Imagine now a different scenario where the learning algorithm can alternate between drawing more examples and computation. The objective of this problem is to prove that PAC-learning can then be possible for some concept classes with infinite VC dimension.

To do so, consider for example the special case of the concept class C of all subsets of natural numbers.

(a) [0 point] Show that the VC dimension of C is infinite. This is rather straightforward.

(b) [50 points] Professor Vitres has an idea for the first stage of a learning algorithm L PAC-learning C. In the first stage, L draws a sufficient number of points m such that the probability of drawing a point beyond the maximum value M observed be small, with high confidence. Can you complete Professor Vitres’ idea by describing the second stage of the algorithm so that it PAC-learns C? The description should be augmented with the proof that L can PAC-learn C.

Here is a description of the algorithm. Let M be the maximum value observed after drawing m points and let p be the probability that a point greater than M be drawn. The probability that all points drawn be smaller than or equal to M is

$$(1 - p)^m \leq e^{-pm}. \quad (10)$$
Setting $\delta/2$ to match the upper bound, yields $\delta/2 = e^{-pm}$, that is
\[p = \frac{1}{m} \log \frac{2}{\delta}. \]
(11)

To bound p by $\epsilon/2$, we can impose the following
\[\frac{1}{m} \log \frac{2}{\delta} \leq \frac{\epsilon}{2}. \]
(12)

Thus, with confidence at least $1 - \delta/2$, the probability that a point greater than M be drawn is at most $\epsilon/2$ if L draws $m \geq \frac{2}{\epsilon} \log \frac{2}{\delta}$ points.

In the second stage, the problem is reduced to a finite VC dimension M. Since PAC-learning with $(\epsilon/2, \delta/2)$ is possible for a finite dimension, this guarantees the (ϵ, δ)-PAC-learning of the full algorithm.