

Foundations of Machine Learning
 Courant Institute of Mathematical Sciences
 Homework assignment 1 – Solution
 February 6, 2007

A. Senate Laws

[30 points]

1. [15 points] The true error in the consistent case is bounded as follows:

$$\text{error}_D(h) \leq \frac{1}{m}(\log |H| + \log \frac{1}{\delta}). \quad (1)$$

For $\delta = .05$, $m = 200$ and $H = 2800$, $\text{error}_D(h) \leq 5.5\%$.

2. [15 points] The true error in the inconsistent case is bounded as:

$$\text{error}_D(h) \leq \widehat{\text{error}}_D(h) + \sqrt{\frac{1}{2m}(\log 2|H| + \log \frac{1}{\delta})}. \quad (2)$$

For $\delta = .05$, $\widehat{\text{error}}_D(h) = m'/m = .1$, $m = 200$ and $H = 2800$, $\text{error}_D(h) \leq 27.05\%$.

B. PAC Learning of Hyper-rectangles

[30 points]

1. The proof in the case of hyper-rectangles is similar to the one given in class. The algorithm selects the tightest axis-aligned hyper-rectangle containing all the sample points. For $i \in [1, 2n]$, select a region r_i such that $\Pr_D[r_i] = \epsilon/(2n)$ for each edge of the hyper-rectangle R . Assuming that $\Pr_D[R - R'] > \epsilon$, argue that R' cannot meet all r_i s, so it must miss at least one. The probability that none of the m sample points falls into region r_i is $(1 - \epsilon/2n)^m$. By the union bound, this shows that

$$\Pr[\text{error}(R') > \epsilon] \leq 2n(1 - \epsilon/2n)^m \leq 2ne^{-\frac{\epsilon m}{2n}}. \quad (3)$$

Setting δ to the right-hand side shows that for

$$m \geq \frac{2n}{\epsilon} \log \frac{2n}{\delta}, \quad (4)$$

with probability at least $1 - \delta$, $\text{error}_D(R') \leq \epsilon$.

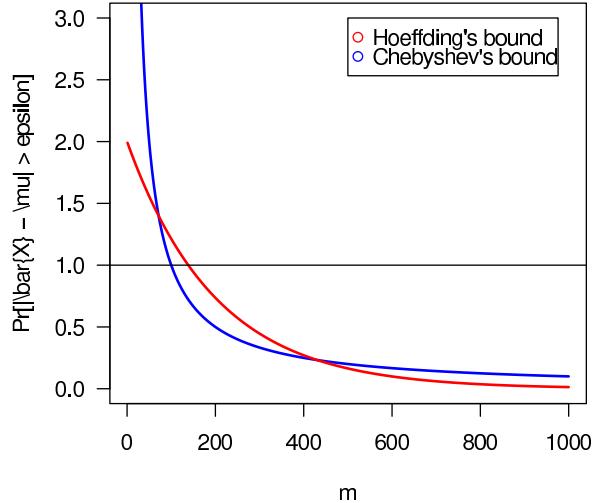


Figure 1: Comparison of Chebyshev's and Hoeffding's bound.

C. Bound Comparison

[40 points]

Let X_1, \dots, X_m be a sequence of random variables taking values in $[0, 1]$ with the same mean μ and variance $\sigma^2 < \infty$ and let $\bar{X} = \frac{1}{m} \sum_{i=1}^m X_i$.

1. [20 points] Since the random variables X_i are independent, the variance of \bar{X} is the sum of the variances: $\text{Var}[\bar{X}] = m(\sigma^2/m^2) = \sigma^2/m$. For any $\epsilon > 0$, using Chebyshev's inequality (see lecture 1),

$$\Pr[|\bar{X} - \mu| > \epsilon] \leq \frac{\sigma^2}{m\epsilon^2}. \quad (5)$$

Using Hoeffding's inequality,

$$\Pr[|\bar{X} - \mu| > \epsilon] \leq 2e^{-2m\epsilon^2}. \quad (6)$$

Thus, Chebyshev's inequality is tighter for $\frac{\sigma^2}{m\epsilon^2} < 2e^{-2m\epsilon^2}$, that is for $\sigma \leq \sqrt{(2m\epsilon^2) e^{-2m\epsilon^2}}$.

2. [20 points] When X_i takes values in $\{0, 1\}$, the variance of X_i is given by

$$\sigma^2 = \mathbb{E}[X_i^2] - \mathbb{E}[X_i]^2 = \mathbb{E}[X_i] - \mathbb{E}[X_i]^2, \quad (7)$$

since $X_i^2 = X_i$. For $\mu \in [0, 1]$, the function $\mu \mapsto \mu(1 - \mu)$ reaches its maximum for $\mu = \frac{1}{2}$. Thus, $\sigma^2 \leq \frac{1}{4}$. Chebyshev's inequality can then be simplified into:

$$\Pr[|\bar{X} - \mu| > \epsilon] \leq \frac{1}{4m\epsilon^2}, \quad (8)$$

The two bounds are approximately equal for $m\epsilon^2 \approx 1.075$.

Figure 1 plots these inequalities for $\epsilon = .05$. Both bounds are vacuous for values of m less than 100. Chebyshev's inequality is tighter for $m < m_0 \approx 1.075/\epsilon^2 = 430$, Hoeffding's inequality tighter for larger values of m .