

Foundations of Machine Learning
 Courant Institute of Mathematical Sciences
 Homework assignment 3 – Solution
 March 31, 2006

Problem 1: Support Vector Machines

[55 points]

(1) [20 points]

(a) [5 points] By definition, given the distribution D , h^* is defined as:

$$h^* = \operatorname{argmin}_{h:X \rightarrow \{-1, +1\}} \operatorname{error}_D(h). \quad (1)$$

K^* is clearly positive definite symmetric since $K^*(x, x')$ is defined as the dot product (in dimension one) of the features vectors $h^*(x)$ and $h^*(x')$.

(b) [15 points] The general expression of the solution is

$$h(x) = \operatorname{sgn}\left(\sum_{i=1}^m \alpha_i K^*(x, x_i) + b\right). \quad (2)$$

Here, it is easy to see both in the separable and non-separable case that the solution is simply:

$$h(x) = \operatorname{sgn}(K^*(x, x_+)), \quad (3)$$

where x_+ is such that $h^*(x_+) = +1$. One support vector is enough. The solution can be rewritten as

$$h(x) = h^*(x). \quad (4)$$

The generalization error of the solution is thus that of the Bayes classifier (it is optimal). The data is separable iff the Bayes error is zero.

(c) [5 points] A kernel of this type is always positive definite symmetric since $K(x, x')$ is defined as a dot product of the feature vectors $h(x)$ and $h(x')$.

Figure 1: Error

(2) [35 points] [Thanks to Chien-I Liao for writing the solution for this section.]

(a) [10 points] We need to train once on m points. The test result and the number support vectors N_{SV} for m points are then known. Then, we just need to train and test N_{SV} SVMs on $m - 1$ points since the leave-one-out error when excluding a non-support vector point is identical to the original error.

(b) [25 points]

- First rescale all the data:

```
$ mv positive.dat old-positive.dat
$ ./svmscale old-positive.dat > positive.dat
$ mv negative.dat old-negative.dat
$ ./svmscale old-negative.dat > negative.dat
```

- Then write a program to split the data into 10 folds. A sample C++ program could be found at

<http://cs.nyu.edu/~cil217/TA/split.cpp>.

Figure 2: Standard Deviation

- Compile the code:
 $\$ g++ \text{split.cpp} -o \text{split}$
- Then write a script to repeatedly run `svm-train` and `svm-predict`. A sample bash script could be found at
http://cs.nyu.edu/~cil217/TA/train_test.sh
- Run the script:
 $\$ \text{chmod } 755 \text{ train_test.sh}$
 $\$ \text{./train_test.sh}$

Figures 1 and 2 show the result with default parameter setting.

Problem 2: Kernel Methods

[45 points]

(1) [20 points] $X^* - I$ is a regular language and can be represented by a finite automaton. K can thus be defined by

$$\forall x, y \in X^*, \quad K(x, y) = [[T \circ T^{-1}]](x, y), \quad (5)$$

Figure 3: Weighted transducer T . e represents the empty string, and $r = \rho$. $X^* - I$ stands for a finite automaton accepting $X^* - I$.

where T is the weighted transducer shown in Figure 3. Thus, K is a rational kernel and in view of the theorem of Lecture 5, it is positive definite symmetric.

(2) [10 points] Let $M_{X^* - I}$ be the minimal automaton representing $X^* - I$. The transducer T of Figure 3 can be constructed using $M_{X^* - I}$. Then, $|T| = |M_{X^* - I}| + 8$. Using composition of weighted transducers, the running time complexity of the computation of the algorithm is:

$$O(|x||y||T \circ T^{-1}|) = O(|x||y||T|^2) = O(|x||y||M_{X^* - I}|^2). \quad (6)$$

(3) [15 points] The set of strings Y over the alphabet X of length less than n form a regular language since they can be described by:

$$Y = \bigcup_{i=0}^{n-1} X^i. \quad (7)$$

Thus, $Y_1 = Y \cap (X^* - I)$ and $Y_2 = (X^* - I) - Y_1$ are also regular languages. It suffices to replace in the transducer T of Figure 3 the transition labeled with $X^* - I : X^* - I/\rho$ with two transitions:

- $Y_1 : Y_1/\rho_1$, and
- $Y_2 : Y_2/\rho_2$,

with the same origin and destination states and with Y_1 and Y_2 denoting finite automata representing them. The kernel is thus still rational and PDS since it is of the form $T' \circ T'^{-1}$.