Foundations of Machine Learning
Courant Institute of Mathematical Sciences
Homework assignment 3 — Solution

March 31,

2006

Problem 1: Support Vector Machines

[55 points]

(1) [20 points]

(a)

[5 points] By definition, given the distribution D, h* is defined
as:
h* = argmin errorp(h). (1)
h:X—{-1,+1}
K* is clearly positive definite symmetric since K*(z, 2’) is defined
as the dot product (in dimension one) of the features vectors h*(z)
and h*(z').

[15 points] The general expression of the solution is
h(z) = sgn(z a; K*(x, ;) + b). (2)
i=1

Here, it is easy to see both in the separable and non-separable
case that the solution is simply:

h(x) = sgn(K*(m,x+)), (3)

where 2, is such that A*(x;) = +1. One support vector is
enough. The solution can be rewritten as

h(xz) = h*(z). (4)

The generalization error of the solution is thus that of the Bayes
classifier (it is optimal). The data is separable iff the Bayes error
is zero.

[5 points] A kernel of this type is always positive definite sym-
metric since K (x,2’) is defined as a dot product of the feature
vectors h(x) and h(z').

Error

05
m=2000
0.45¢ m=4000 1
m=6000
04r m=8000 1
m=10000
0.35} .
2 o3f A :
[5)
0.25f /]
02+ |
0.15} |
01 ‘ ‘ ‘ ‘ ‘
1 15 2 2.5 3 35 4

Degree
Figure 1: Error

(2) [35 points] [Thanks to Chien-I Liao for writing the solution for this
section.

(a) [10 points] We need to train once on m points. The test result and
the number support vectors Ngy for m points are then known.
Then, we just need to train and test Ngyy SVMs on m — 1 points
since the leave-one-out error when excluding a non-support vector
point is identical to the original error.

(b) [25 points]
o First rescale all the data:
$ mv positive.dat old-positive.dat
$./svmscale old-positive.dat > positive.dat

$ mv negative.dat old-negative.dat
$./svmscale old-negative.dat > negative.dat

e Then write a program to split the data into 10 folds.
A sample C++ program could be found at

http://cs.nyu.edu/"cil217/TA/split.cpp.

Standard Deviation

0.08
0.07} m=2000 |
m=4000
0.06 m=6000 |
m=8000
m=10000
0.05f /A
///
T 0.04r 1
//
//
0.03f] / 1
"
= = >
0.02F / 1
=
0.01 J
0 ‘ ‘ ‘ ‘ ‘
1 15 2 25 3 35 4

Degree

Figure 2: Standard Deviation

e Compile the code:
$ g++ split.cpp -o split

e Then write a script to repeatedly run svm-train and
svm-predict. A sample bash script could be found at

http://cs.nyu.edu/"cil217/TA/train test.sh

e Run the script:
$ chmod 755 train_test.sh
$./train_test.sh

Figures 1 and 2 show the result with default parameter setting.
Problem 2: Kernel Methods
[45 points]

(1) [20 points] X* — I is a regular language and can be represented by a
finite automaton. K can thus be defined by

Va,y € X, K(z,y) = [[ToT |(z,y), (5)

t.e/l

ael

A

X* -1 X* - 1r >@

Figure 3: Weighted transducer T'. e represents the empty string, and r = p.

X* —

I stands for a finite automaton accepting X™* — I.

where T is the weighted transducer shown in Figure 3. Thus, K is a
rational kernel and in view of the theorem of Lecture 5, it is positive
definite symmetric.

[10 points] Let Mx+«_; be the minimal automaton representing X™* —I.
The transducer T of Figure 3 can be constructed using Mx«_r. Then,
|T| = |Mx+_1| + 8. Using composition of weighted transducers, the
running time complexity of the computation of the algorithm is:

O(lzlylIT o T7Y) = O(lzlylIT[?) = O(|allyl[Mx--1*). (6)

[15 points] The set of strings Y over the alphabet X of length less than
n form a regular language since they can be described by:

n—1
Yy =[] X" (7)
=0

Thus, Y1 = Y N (X* — 1) and Yo = (X* — I) — Y7 are also regular
languages. It suffices to replace in the transducer T of Figure 3 the
transition labeled with X* — I : X* — I /p with two transitions:

L Yizyi/plvand
o Y23Y2/P27

with the same origin and destination states and with Y7 and Y5 denot-
ing finite automata representing them. The kernel is thus still rational
and PDS since it is of the form 7" o 7'~ 1.

