
Foundations of Machine Learning
Courant Institute of Mathematical Sciences
Homework assignment 3 – Solution
March 31, 2006

Problem 1: Support Vector Machines

[55 points]

(1) [20 points]

(a) [5 points] By definition, given the distribution D, h∗ is defined
as:

h∗ = argmin
h:X→{−1,+1}

errorD(h). (1)

K∗ is clearly positive definite symmetric since K∗(x, x′) is defined
as the dot product (in dimension one) of the features vectors h∗(x)
and h∗(x′).

(b) [15 points] The general expression of the solution is

h(x) = sgn(

m∑

i=1

αiK
∗(x, xi) + b). (2)

Here, it is easy to see both in the separable and non-separable
case that the solution is simply:

h(x) = sgn(K∗(x, x+)), (3)

where x+ is such that h∗(x+) = +1. One support vector is
enough. The solution can be rewritten as

h(x) = h∗(x). (4)

The generalization error of the solution is thus that of the Bayes
classifier (it is optimal). The data is separable iff the Bayes error
is zero.

(c) [5 points] A kernel of this type is always positive definite sym-
metric since K(x, x′) is defined as a dot product of the feature
vectors h(x) and h(x′).

1

1 1.5 2 2.5 3 3.5 4
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Degree

er
ro

r

Error

m=2000

m=4000

m=6000

m=8000

m=10000

Figure 1: Error

(2) [35 points] [Thanks to Chien-I Liao for writing the solution for this
section.]

(a) [10 points] We need to train once on m points. The test result and
the number support vectors NSV for m points are then known.
Then, we just need to train and test NSV SVMs on m− 1 points
since the leave-one-out error when excluding a non-support vector
point is identical to the original error.

(b) [25 points]

• First rescale all the data:
$ mv positive.dat old-positive.dat

$./svmscale old-positive.dat > positive.dat

$ mv negative.dat old-negative.dat

$./svmscale old-negative.dat > negative.dat

• Then write a program to split the data into 10 folds.

A sample C++ program could be found at

http://cs.nyu.edu/~cil217/TA/split.cpp.

2

1 1.5 2 2.5 3 3.5 4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Degree

st
d

Standard Deviation

m=2000

m=4000

m=6000

m=8000

m=10000

Figure 2: Standard Deviation

• Compile the code:

$ g++ split.cpp -o split

• Then write a script to repeatedly run svm-train and

svm-predict. A sample bash script could be found at

http://cs.nyu.edu/~cil217/TA/train test.sh

• Run the script:

$ chmod 755 train test.sh

$./train test.sh

Figures 1 and 2 show the result with default parameter setting.

Problem 2: Kernel Methods

[45 points]

(1) [20 points] X∗ − I is a regular language and can be represented by a
finite automaton. K can thus be defined by

∀x, y ∈ X∗, K(x, y) = [[T ◦ T−1]](x, y), (5)

3

0

a:e/1
c:e/1
g:e/1
t:e/1

1/1
X* - I: X* - I/r

a:e/1
c:e/1
g:e/1
t:e/1

Figure 3: Weighted transducer T . e represents the empty string, and r = ρ.
X∗ − I stands for a finite automaton accepting X∗ − I.

where T is the weighted transducer shown in Figure 3. Thus, K is a
rational kernel and in view of the theorem of Lecture 5, it is positive
definite symmetric.

(2) [10 points] Let MX∗−I be the minimal automaton representing X∗−I.
The transducer T of Figure 3 can be constructed using MX∗−I . Then,
|T | = |MX∗−I | + 8. Using composition of weighted transducers, the
running time complexity of the computation of the algorithm is:

O(|x||y||T ◦ T−1|) = O(|x||y||T |2) = O(|x||y||MX∗−I |
2). (6)

(3) [15 points] The set of strings Y over the alphabet X of length less than
n form a regular language since they can be described by:

Y =

n−1⋃

i=0

Xi. (7)

Thus, Y1 = Y ∩ (X∗ − I) and Y2 = (X∗ − I) − Y1 are also regular
languages. It suffices to replace in the transducer T of Figure 3 the
transition labeled with X∗ − I : X∗ − I/ρ with two transitions:

• Y1 : Y1/ρ1, and

• Y2 : Y2/ρ2,

with the same origin and destination states and with Y1 and Y2 denot-
ing finite automata representing them. The kernel is thus still rational
and PDS since it is of the form T ′ ◦ T ′−1.

4

