
Foundations of Machine Learning
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Homework assignment 2 – Solution

(1) [15 points] Shattering coefficients of intervals in R.

Let {x1, . . . , xm} be a set of m distinct ordered real numbers and let
I be an interval. If I ∩ {x1, . . . , xm} contains k numbers, their indices
are of the form j, j +1, . . . , j +k−1. How many different set of indices
are possible? The answer is m − k + 1 since j can take values in
{1, . . . ,m − k + 1}. Thus, the total number of dichotomies for a set of
size m is:
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which matches the general bound on shattering coefficients.

(2) [15 points] Bound on shattering coefficients.

Let X be an arbitrary set. Consider the set of all subsets of X of size
less than or equal to d. The indicator functions of these sets form a
concept class whose shattering coefficient is equal to the general upper
bound.

(3) [20 points] VC dimension of a vector space of real functions.

Show that no set of size m = r + 1 can be shattered by H. Let
x1, . . . , xm be m arbitrary points. Define the linear mapping l : F →
R

m defined by:
l(f) = (f(x1), . . . , f(xm))

Since the dimension of dim(F ) = m−1, the rank of l is at most m−1
and there exists α ∈ R

m orthogonal to l(F ):
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We can assume that at least one αi is negative. Then,
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Now, assume that there exists a set {x : f(x) ≥ 0} selecting exactly
the xis on the left-hand side. Then all the terms on the left-hand
side are non-negative, while those on the right-hand side are negative,
which cannot be. Thus, {x1, . . . , xm} cannot be shattered.

(4) [20 points] Soft margin hyperplanes

The corresponding dual problem is:
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(5) [30 points] SVM classification

• [(i)] The data was already generated.

• [(ii)] Downloading and installing the library should not have been
a problem.

• [(iii)] [7.5 points] Plotting the test error as a function of the pa-
rameters should not have been a problem.

• [(iv)] [7.5 points] Plotting the training and test errors as a func-
tion of the size of the training data is also straightforward.

• [(v)] [15 points] The density functions of the two classes have
the same covariance matrix, thus the best classifier h∗ is the one
based on the separating hyperplane halfway between the centers
of the Gaussians passing through µ1+µ2

2 = 0. The corresponding
error is the area where the two density functions overlap, which
can be proved to be:
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with ρ = (µ2 − µ1)
tΣ−1(µ2 − µ1) and Σ = 50I. An approximate

value of the integral is: Pr[error(h∗)] ≈ .16. This seems to be
close to the empirical test error, but it must be a lower bound.
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