Foundations of Machine Learning
Department of Computer Science, NYU
Homework assignment 2 – Solution

(1) [15 points] Shattering coefficients of intervals in \(\mathbb{R} \).

Let \(\{x_1, \ldots, x_m\} \) be a set of \(m \) distinct ordered real numbers and let \(I \) be an interval. If \(I \cap \{x_1, \ldots, x_m\} \) contains \(k \) numbers, their indices are of the form \(j, j + 1, \ldots, j + k - 1 \). How many different set of indices are possible? The answer is \(m - k + 1 \) since \(j \) can take values in \(\{1, \ldots, m - k + 1\} \). Thus, the total number of dichotomies for a set of size \(m \) is:

\[
1 + \sum_{k=1}^{m} (m - k + 1) = 1 + \frac{m(m + 1)}{2} = \binom{m}{0} + \binom{m}{1} + \binom{m}{2},
\]

which matches the general bound on shattering coefficients.

(2) [15 points] Bound on shattering coefficients.

Let \(X \) be an arbitrary set. Consider the set of all subsets of \(X \) of size less than or equal to \(d \). The indicator functions of these sets form a concept class whose shattering coefficient is equal to the general upper bound.

(3) [20 points] VC dimension of a vector space of real functions.

Show that no set of size \(m = r + 1 \) can be shattered by \(H \). Let \(x_1, \ldots, x_m \) be \(m \) arbitrary points. Define the linear mapping \(l : F \rightarrow \mathbb{R}^m \) defined by:

\[
l(f) = (f(x_1), \ldots, f(x_m))
\]

Since the dimension of \(\text{dim}(F) = m - 1 \), the rank of \(l \) is at most \(m - 1 \) and there exists \(\alpha \in \mathbb{R}^m \) orthogonal to \(l(F) \):

\[
\forall f \in F, \sum_{i=1}^{m} \alpha_i f(x_i) = 0
\]

We can assume that at least one \(\alpha_i \) is negative. Then,

\[
\forall f \in F, \sum_{i: \alpha_i \geq 0} \alpha_i f(x_i) = -\sum_{i: \alpha_i < 0} \alpha_i f(x_i)
\]
Now, assume that there exists a set \(\{ x : f(x) \geq 0 \} \) selecting exactly the \(x_i \)'s on the left-hand side. Then all the terms on the left-hand side are non-negative, while those on the right-hand side are negative, which cannot be. Thus, \(\{ x_1, \ldots, x_m \} \) cannot be shattered.

(4) [20 points] Soft margin hyperplanes

The corresponding dual problem is:

\[
\max_{\alpha, \beta} \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j (x_i \cdot x_j) - \left(\alpha_i + \beta_i \right)^{k/(k-1)} \\
\frac{(kC)^{1/(k-1)}}{(k-1)} \left(\frac{1}{k} - 1 \right)
\]

subject to:

\[
\sum_{i=1}^{m} \alpha_i y_i = 0 \quad \alpha \geq 0 \quad \beta \geq 0.
\]

(5) [30 points] SVM classification

- [(i)] The data was already generated.
- [(ii)] Downloading and installing the library should not have been a problem.
- [(iii)] [7.5 points] Plotting the test error as a function of the parameters should not have been a problem.
- [(iv)] [7.5 points] Plotting the training and test errors as a function of the size of the training data is also straightforward.
- [(v)] [15 points] The density functions of the two classes have the same covariance matrix, thus the best classifier \(h^* \) is the one based on the separating hyperplane halfway between the centers of the Gaussians passing through \(\frac{\mu_2 - \mu_1}{2} = 0 \). The corresponding error is the area where the two density functions overlap, which can be proved to be:

\[
\Pr[error(h^*]) = \int_{\rho/2}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^2} dx
\]

with \(\rho = (\mu_2 - \mu_1)^T \Sigma^{-1}(\mu_2 - \mu_1) \) and \(\Sigma = 50I \). An approximate value of the integral is: \(\Pr[error(h^*]) \approx 0.16 \). This seems to be close to the empirical test error, but it must be a lower bound.