
Mehryar Mohri
Foundations of Machine Learning
Courant Institute of Mathematical Sciences
Solution assignment 2
Solution of section B written by Cyril Allauzen.

A. VC Dimension

1. Let H and H ′ be two families of functions mapping from X to {0, 1} with
finite VC dimensions. Show that

VCdim(H ∪H ′) ≤ VCdim(H) + VCdim(H ′) + 1. (1)

Use that to determine the VC dimension of the hypothesis set formed by the
union of axis-aligned rectangles and triangles in dimension 2.

The number of ways m particular points can be classified using H∪H ′ is at most the
number of classifications using H plus the number of classifications using H ′. This
gives immediately the following inequality for growth functions for any m ≥ 0:

ΠH′∪H(m) ≤ ΠH(m) + ΠH′(m). (2)

Let VCdim(H) = d and VCdim(H ′) = d′. Then, by Sauer’s lemma,

ΠH′∪H(m) ≤
d∑

i=0

(
m

i

)
+

d′∑
i=0

(
m

i

)
. (3)

Using the identity
(
m
i

)
=

(
m

m−i

)
and a change of variable, this can be rewritten as

ΠH′∪H(m) ≤
d∑

i=0

(
m

i

)
+

d′∑
i=0

(
m

m− i

)
≤

d∑
i=0

(
m

i

)
+

m∑
i=m−d′

(
m

i

)
.

Now, if m− d′ > d + 1, that is m ≥ d + d′ + 2,

ΠH′∪H(m) ≤
m∑

i=0

(
m

i

)
−

(
m

d + 1

)
= 2m −

(
m

d + 1

)
< 2m.

Thus, the VC dimension of H ∪H ′ cannot be greater than or equal to d + d′ + 2,
which implies VCdim(H ∪H ′) ≤ d + d′ + 1.

Now, by Lecture 3, the VC dimension of axis-aligned rectangles in dimension 2 is
4 and the VC dimension of triangles (3-gones) is 7. Thus, the VC dimension of the
union of these sets is bounded by 4 + 7 + 1 = 12.

1



Figure 1: Illustration of (h∆A) ∩ S = (h ∩ S)∆(A ∩ S).

2. For two sets A and B, let A∆B denote the symmetric difference of A and
B, that is A∆B = (A ∪ B) − (A ∩ B). Let H be a non-empty family of
subsets of X with finite VC dimension. Let A be an element of H and define
H∆A = {X∆A : X ∈ H}. Show that

VCdim(H∆A) = VCdim(H). (4)

Fix a set S. We can show that the number of classifications of S using H is the same
as when using H∆A. The set of classifications obtained using H can be identified
with {S ∩ h : h ∈ H} and the set of classifications using H∆A can be identified
with {S ∩ (h∆A) : h ∈ H}. Observe that for any h∈H ,

S ∩ (h∆A) = (S ∩ h)∆(S ∩A). (5)

Figure 1 helps illustrate this equality in a special case. Now, in view of this inequal-
ity, if S ∩ (h∆A) = S ∩ (h′∆A) for h, h′ ∈ H , then

(S ∩ h)∆B = (S ∩ h′)∆B, (6)

with B = S ∩ A. Since two sets that have the same symmetric differences with
respect to a set B must be equal, this implies

S ∩ h = S ∩ h′. (7)

This shows that φ defined by

φ : S ∩H → S ∩ (H∆A)
S ∩ h 7→ S ∩ (h∆A)

is a bijection and thus that the sets S∩H and S∩(H∆A) have the same cardinality.

B. SVMs

1. Download and install the libsvm software library from:
http://www.csie.ntu.edu.tw/˜cjlin/libsvm/.

2



2. Download the ISOLET data set from
http://archive.ics.uci.edu/ml/datasets/ISOLET . There are two
files: isolet1+2+3+4, and isolet5. isolet1+2+3+4 should be used for
training and validation, isolet5 for testing only.

The dataset corresponds to a number of people pronouncing each of the 26
letters in the alphabet. Each person pronounces the whole alphabet twice.
We will consider the binary classification that consists of distinguishing the
first 13 letters from the last 13 letters. Thus, assign label ’-1’ to the first 13,
’+1’ to the rest.

3. Normalize all input vectors (isolet1+2+3+4 and isolet5): compute the
scaling and offset on the isolet1+2+3+4 so that each feature has zero mean
and standard deviation 1, and apply the same scaling on the isolet5 data.

Using svm-scale would not have been the right thing here.

4. Split the data isolet1+2+3+4, containing the alphabet spoken 240 times,
into 10 folds, ensuring that the same speaker is only in one of the folds by
splitting after each 24 pronunciations (modulo a few that are missing; check
that all your files start with the label ’1’).

The key here is to ensure that each speaker is assigned to the same fold and to
be careful with the missing datapoints. Using the -v option of the svm-train

command-line utility would not do the right thing. We proceeded in two steps:

(a) identify the speaker corresponding to each line of the data file and

(b) randomly assign each speaker to one the folds and assign each line to random
fold corresponding to the speaker for that line.

5. Let x1, . . . , xm denote the sample formed by the ten folds. For each feature
f , let f1, . . . , fm denote its values for x1, . . . , xm, and let y1, . . . , ym denote
the labels. Compute the empirical correlation of each non-constant feature f
with the labels

ρ̂(f, y) =
σ̂fy√
σ̂ff σ̂yy

,

where σ̂fy = 1
m

∑m
i=1(fi − f)(yi − y), with f the average value of f , and

y the average value of y. σ̂ff and σ̂yy are defined in a similar way. Sort all
features in decreasing order of the absolute value of the correlation and save
the correlation values.

The 10 features which correlations are the largest in absolute value are given below.

3



Feature Correlation
480 -0.306521
214 -0.287193
182 -0.280878
215 -0.280177
183 -0.275566
213 -0.272187
181 -0.271201
184 -0.265968
216 -0.261865
188 -0.260272

6. We first consider a Naive algorithm. Given a kernel K, this algorithm assigns
a label to a new point simply based on its similarity with respect to the set
of positively labeled versus its similarity with the negatively labeled points
of the training set. Thus, for any point x, if we denote by y the vector of the

labels in the training set and use the notation Kx =
[

K(x,x1)...
K(x,xm)

]
, the label it

assigns to x is
h(x) = sgn(Kx · y).

Determine and report the performance of the Naive algorithm on the test set
when using a polynomial kernel of degree d with d = 1, 2, 3, 4, when using a
percentage p of the most correlated features, with p = 100%, 80%, 40%, 20%.
Polynomial kernels are of the form

(γ · xT y + c0)d. (8)

By default when using the svm-train command-line utility, the value of γ is 1/F
where F denotes the number of features and the value of c0 is 0. We chose to use
these default values of γ and c0. The performance of the naive method on the test
set is given below.

Percentage of features
Accuracy 20% 40% 80% 100%
Degree 1 66.39% 66.65% 67.60% 67.35%

2 51.19% 55.23% 60.36% 64.34%
3 68.31% 69.85% 72.80% 73.57%
4 52.79% 56.76% 65.55% 70.43%

With γ = 1/F and c0 = 0, the performance of the even degree kernels is signifi-
cantly worse than the one of the odd degree kernels. However, using c0 = 1 would
have made the performance of the even degree kernels match the one of the odd
degree kernels.

4



7. Determine and report the performance of SVMs for the same set of kernels
and the same sets of features. To determine the trade-off parameter C, use
10-fold cross validation with the ten folds previously defined (let the other
parameters of polynomial kernels in libsvm, γ and c, be equal to their de-
fault values 1). Give a plot comparing the performance of SVMs with that
of the Naive algorithm for each value of p.

Depending on the choice of γ and c0, the value of the best C can be quite different.
We report here results obtained using γ = 1/F and c0 = 0.

% of features Degree C Accuracy
(cross-validation) (test set)

20% 1 0.4 78.17% 77.49%
2 7.5 86.08% 85.57%
3 7.5 87.72% 86.20%
4 16 86.32% 84.99%

40% 1 3 81.27% 81.65%
2 3 91.59% 90.70%
3 8 92.59% 92.11%
4 16 91.62% 89.80%

80% 1 10 85.50% 85.63%
2 15 94.99% 94.36%
3 4 95.71% 95.83%
4 16 94.62% 93.77%

100% 1 4 85.94% 87.30%
2 4 95.80% 94.87%
3 6 96.09% 96.66%
4 20 95.49% 94.55%

Figure 2 gives a plot comparing the performance of SVMs with that of the Naive
algorithm for each value of p.

8. Now, first multiply each feature f by its empirical correlation ρ̂(f, y) and
retrain SVMs with the full set of features. Report the test results obtained
for the four values of d.

The results obtained here seem to depend heavily on the polynomial kernel param-
eters γ and c0. Ideally, one would like to determine the value of C using cross
validation as done above. The results obtained using C = 1 are given below for
three sets of polynomial kernel parameters.

5



●

● ●
●

Degree

A
cc

ur
ac

y

1 2 3 4

50
60

70
80

90
10

0

● svm
naive

20% of features

●

●
●

●

Degree

A
cc

ur
ac

y

1 2 3 4
50

60
70

80
90

10
0

● svm
naive

40% of features

(a) (b)

●

●
●

●

Degree

A
cc

ur
ac

y

1 2 3 4

50
60

70
80

90
10

0

● svm
naive

80% of features

●

●
●

●

Degree

A
cc

ur
ac

y

1 2 3 4

50
60

70
80

90
10

0

● svm
naive

100% of features

(c) (d)

Figure 2: Accuracy on the test set of SVMs and the naive algorithms when using
the (a) 20%, (c) 40%, (d) 80% and (d) 100% most correlated features

6



●

●

●
●

0.30 0.35 0.40 0.45 0.50

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Avg. fraction of SV

A
vg

. e
rr

or

● d = 1
d = 2
d = 3
d = 4

Figure 3: Average test error as a function of the fraction of support vector

γ = 1/F, c0 = 0 γ = 1/F, c0 = 1 γ = 1, c0 = 1
Degree Accuracy Degree Accuracy Degree Accuracy

1 74.66% 1 74.66% 1 86.15%
2 50.03% 2 77.68% 2 93.33%
3 50.03% 3 79.03% 3 94.87%
4 50.03% 4 80.05% 4 94.55%

9. For each d and p, fix C to its best value obtained in question 7. For this
value of C, for each d and p, train ten models, each time by excluding one
of the ten folds. Compute the average number of support vectors and the
average test error for each d and p. Plot the average error as a function of the
average fraction of support vectors. Discuss your results and compare with
the leave-one-out theorem presented in class.

The average test error and the average number of support vectors are given below
for the different values of p and d.

7



% of features Degree Avg. accuracy Avg. error Avg. number of SV
20% 1 77.69% 22.31% 3123.8

2 85.25% 14.75% 2275.1
3 85.79% 14.21% 2534.0
4 84.46% 15.54% 2973.9

40% 1 81.33% 18.67% 2527.3
2 90.57% 9.43% 2161.0
3 91.77% 8.23% 2522.9
4 89.44% 10.56% 3157.1

80% 1 85.57% 14.43% 1967.8
2 94.06% 5.84% 1868.3
3 95.41% 4.59% 2525.1
4 93.55% 6.45% 3192.2

100% 1 87.06% 12.94% 2101.9
2 94.78% 5.22% 1931.7
3 96.34% 3.66% 2530.3
4 94.22% 5.78% 3175.8

Figure 3 shows the average test error as a function of the fraction of support vectors.
Observe that the average test error appears to be bounded by the average fraction
of support vectors, in line with what was suggested by the leave-one-out analysis
presented in class.

8


