

Mehryar Mohri
 Foundations of Machine Learning
 Courant Institute of Mathematical Sciences
 Solution assignment 1
 Due: February 22, 2010

A. PAC Learning

- Let $X = \mathbb{R}^2$ with orthonormal basis (e_1, e_2) and consider the set of concepts defined by the area inside a right triangle ABC with two sides parallel to the axes, with $\overrightarrow{AB}/AB = e_1$ and $\overrightarrow{AC}/AC = e_2$, and $AB/AC = \alpha$ for some positive real $\alpha \in \mathbb{R}_+$. Show, using similar methods to those used in the lecture slides for the axis-aligned rectangles, that this class can be (ϵ, δ) -PAC-learned from training data of size $m \geq (3/\epsilon) \log(3/\delta)$.

As in the case of axis-aligned rectangles, consider three regions r_1, r_2, r_3 , along the sides of the target concept as indicated in Figure 1. Note that the triangle formed by the points A'', B'', C'' is similar to ABC (same angles) since $A''B''$ must be parallel to AB , and similarly for the other sides.

Assume that $\Pr[ABC] > \epsilon$, otherwise the statement would be trivial. Consider a triangle $A'B'C'$ similar to ABC and consistent with the training sample and such that it meets all three regions r_1, r_2, r_3 .

Since it meets r_1 , the line $A'B'$ must be below $A''B''$. Since it meets r_2 and r_3 , A' must be in r_2 and B' in r_3 (see Figure 1). Now, since the angle $\widehat{A'B'C'}$ is equal to $\widehat{A''B''C''}$, C' must be necessarily above C'' . This implies that triangle $A'B'C'$ contains $A''B''C''$ and thus $\text{error}(A'B'C') \leq \epsilon$.

$$\text{error}(A'B'C') > \epsilon \implies \exists i \in \{1, 2, 3\} : A'B'C' \cap r_i = \emptyset.$$

Thus, by the union bound,

$$\Pr[\text{error}(A'B'C') > \epsilon] \leq \sum_{i=1}^3 \Pr[A'B'C' \cap r_i = \emptyset] \leq 3(1 - \epsilon/3)^m \leq 3e^{-3m\epsilon}.$$

Setting δ to match the right-hand side gives the sample complexity $m \geq \frac{3}{\epsilon} \log \frac{3}{\delta}$.

B. Biased coins [based on theorem of (Anthony and Bartlett, 1999)]

- Professor Moent has two coins in his pocket, coin x_A and coin x_B , both slightly biased as follows:

$$\Pr[x_A = 0] = 1/2 - \epsilon/2 \quad \Pr[x_B = 0] = 1/2 + \epsilon/2,$$

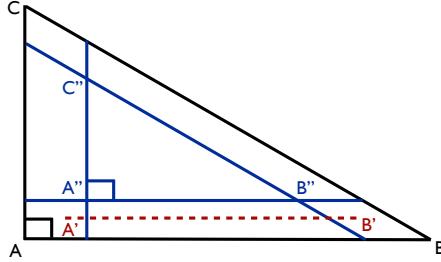


Figure 1: Rectangle triangles.

where $0 < \epsilon < 1$ is a small positive number and where 0 denotes head and 1 tail. He likes to play the following game with his students. He randomly picks a coin $x \in \{x_A, x_B\}$ from his pocket (uniformly), tosses it m times, then reveals the sequence of 0s and 1s he obtained and asks which coin was tossed.

The goal of this exercise is to determine how large m needs to be for a student's coin prediction error to be at most $\delta > 0$.

1. Let S be a sample of size m . Professor Moent's best student, Oskar, plays according to the decision rule $f_o: \{0, 1\}^m \rightarrow \{x_A, x_B\}$ defined by $f_o(S) = x_A$ iff $N(S) < m/2$, where $N(S)$ is the number of 0's in sample S .

Suppose m is even, then show that

$$\text{error}(f_o) \geq \frac{1}{2} \Pr \left[N(S) \geq \frac{m}{2} \mid x = x_A \right]. \quad (1)$$

By definition of the error of Oskar's prediction rule,

$$\begin{aligned} \text{error}(f_o) &= \Pr[f_o(S) \neq x] \\ &= \Pr[f_o(S) = x_A \wedge x = x_B] + \Pr[f_o(S) = x_B \wedge x = x_A] \\ &= \Pr \left[N(S) < \frac{m}{2} \mid x = x_B \right] \Pr[x = x_B] + \\ &\quad \Pr \left[N(S) \geq \frac{m}{2} \mid x = x_A \right] \Pr[x = x_A] \\ &= \frac{1}{2} \Pr[N(S) < \frac{m}{2} \mid x = x_B] + \frac{1}{2} \Pr \left[N(S) \geq \frac{m}{2} \mid x = x_A \right] \\ &\geq \frac{1}{2} \Pr \left[N(S) \geq \frac{m}{2} \mid x = x_A \right]. \end{aligned}$$

2. Assuming m even, use the inequalities given in the appendix to show that

$$\text{error}(f_o) > \frac{1}{4} \left[1 - \left[1 - e^{-\frac{m\epsilon^2}{1-\epsilon^2}} \right]^{\frac{1}{2}} \right]. \quad (2)$$

Note that $\Pr[N(S) \geq \frac{m}{2} | x = x_A] = \Pr[B(m, p) \geq k]$, with $p = 1/2 - \epsilon/2$, $k = \frac{m}{2}$, and $mp \leq k \leq m(1-p)$. Thus, by the binomial inequality of the Appendix,

$$\text{error}(f_o) \geq \frac{1}{2} \Pr \left[N \geq \frac{m\epsilon/2}{\sqrt{1/4(1-\epsilon^2)m}} \right] = \frac{1}{2} \Pr \left[N \geq \frac{\sqrt{m}\epsilon}{\sqrt{1-\epsilon^2}} \right].$$

Using the second inequality of the Appendix, we now obtain

$$\text{error}(f_o) \geq \frac{1}{4} \left(1 - \sqrt{1 - e^{-u^2}} \right),$$

with $u = \frac{\sqrt{m}\epsilon}{\sqrt{1-\epsilon^2}}$, which coincides with (2).

3. Argue that if m is odd, the probability can be lower bounded by the one for $m+1$ and conclude that for both odd and even m ,

$$\text{error}(f_o) > \frac{1}{4} \left[1 - \left[1 - e^{-\frac{2[m/2]\epsilon^2}{1-\epsilon^2}} \right]^{\frac{1}{2}} \right]. \quad (3)$$

If m is odd, since $\Pr \left[N(S) \geq \frac{m}{2} | x = x_A \right] \geq \Pr \left[N(S) \geq \frac{m+1}{2} | x = x_A \right]$, we can use the lower bound

$$\text{error}(f_o) \geq \frac{1}{2} \Pr \left[N(S) \geq \frac{m+1}{2} | x = x_A \right].$$

Thus, in both cases we can use the lower bound expression with $\lceil m/2 \rceil$ instead of $m/2$.

4. Using this bound, how large must m be if Oskar's error is at most δ , where $0 < \delta < 1/4$. What is the asymptotic behavior of this lower bound as a function of ϵ ?

If $\text{error}(f_o)$ is at most δ , then $\frac{1}{4} \left[1 - \left[1 - e^{-\frac{2[m/2]\epsilon^2}{1-\epsilon^2}} \right]^{\frac{1}{2}} \right] < \delta$, which gives

$$e^{-\frac{2[m/2]\epsilon^2}{1-\epsilon^2}} < 1 - (1 - 4\delta)^2 = 4\delta(2 - 4\delta) = 8\delta(1 - 2\delta),$$

and

$$m > 2 \left[\frac{1 - \epsilon^2}{2\epsilon^2} \log \frac{1}{8\delta(1 - 2\delta)} \right].$$

The lower bound varies as $\frac{1}{\epsilon^2}$.

5. Show that no decision rule $f: \{0,1\}^m \rightarrow \{x_A, x_B\}$ can do better than Oskar's rule f_o . Conclude that the lower bound of the previous question applies to all rules.

Let f be an arbitrary rule and denote by F_A the set of samples for which $f(S) = x_A$ and by F_B the complement. Then, by definition of the error,

$$\begin{aligned} \text{error}(f) &= \sum_{S \in F_A} \Pr[S \wedge x_B] + \sum_{S \in F_B} \Pr[S \wedge x_A] \\ &= \frac{1}{2} \sum_{S \in F_A} \Pr[S|x_B] + \frac{1}{2} \sum_{S \in F_B} \Pr[S|x_A] \\ &= \frac{1}{2} \sum_{\substack{S \in F_A \\ N(S) < m/2}} \Pr[S|x_B] + \frac{1}{2} \sum_{\substack{S \in F_A \\ N(S) \geq m/2}} \Pr[S|x_B] + \\ &\quad \frac{1}{2} \sum_{\substack{S \in F_B \\ N(S) < m/2}} \Pr[S|x_A] + \frac{1}{2} \sum_{\substack{S \in F_B \\ N(S) \geq m/2}} \Pr[S|x_A]. \end{aligned}$$

Now, if $N(S) \geq m/2$, clearly $\Pr[S|x_B] \geq \Pr[S|x_A]$. Similarly, if $N(S) < m/2$, clearly $\Pr[S|x_A] \geq \Pr[S|x_B]$. In view of these inequalities, $\text{error}(f)$ can be lower bounded as follows

$$\begin{aligned} \text{error}(f) &\geq \frac{1}{2} \sum_{\substack{S \in F_A \\ N(S) < m/2}} \Pr[S|x_B] + \frac{1}{2} \sum_{\substack{S \in F_A \\ N(S) \geq m/2}} \Pr[S|x_A] + \\ &\quad \frac{1}{2} \sum_{\substack{S \in F_B \\ N(S) < m/2}} \Pr[S|x_B] + \frac{1}{2} \sum_{\substack{S \in F_B \\ N(S) \geq m/2}} \Pr[S|x_A] \\ &= \frac{1}{2} \sum_{S: N(S) < m/2} \Pr[S|x_B] + \frac{1}{2} \sum_{S: N(S) \geq m/2} \Pr[S|x_A] \\ &= \text{error}(f_o). \end{aligned}$$

Oskar's rule is known as the maximum likelihood solution.

Appendix

0.1 Binomial inequality

Let B be a binomial (m, p) random variable with $p \leq 1/2$. Then, for $mp \leq k \leq m(1-p)$,

$$\Pr[B \geq k] \geq \Pr\left[N \geq \frac{k - mp}{\sqrt{mp(1-p)}}\right], \quad (4)$$

where N is in standard normal form.

0.2 Tail bound

If N is a random variable following the standard normal distribution, then for $u > 0$,

$$\Pr[N \geq u] \geq \frac{1}{2} \left(1 - \sqrt{1 - e^{-u^2}} \right). \quad (5)$$