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A. PAC Learning

• Let X =R2 with orthonormal basis(e1, e2) and consider the set of concepts
defined by the area inside a right triangleABC with two sides parallel to
the axes, with

−−→
AB/AB = e1 and

−→
AC/AC = e2, andAB/AC = α for

some positive realα ∈ R+. Show, using similar methods to those used in
the lecture slides for the axis-aligned rectangles, that this class can be(ǫ, δ)-
PAC-learned from training data of sizem ≥ (3/ǫ) log(3/δ).

As in the case of axis-aligned rectangles, consider three regionsr1, r2, r3, along the
sides of the target concept as indicated in Figure 1. Note that the triangle formed
by the pointsA”, B”, C” is similar to ABC (same angles) sinceA”B” must be
parallel toAB, and similarly for the other sides.

Assume thatPr[ABC] > ǫ, otherwise the statement would be trivial. Consider a
triangleA′B′C′ similar toABC and consistent with the training sample and such
that it meets all three regionsr1, r2, r3.

Since it meetsr1, the lineA′B′ must be belowA”B”. Since it meetsr2 andr3, A′

must be inr2 andB′ in r3 (see Figure 1). Now, since the anglêA′B′C′ is equal
to ̂A”B”C”, C′ must be necessarily aboveC”. This implies that triangleA′B′C′

containsA”B”C” and thuserror(A′B′C′) ≤ ǫ.

error(A′B′C′) > ǫ =⇒ ∃i ∈ {1, 2, 3} : A′B′C′ ∩ ri = ∅.

Thus, by the union bound,

Pr[error(A′B′C′) > ǫ] ≤
3

∑

i=1

Pr[A′B′C′ ∩ ri = ∅] ≤ 3(1 − ǫ/3)m ≤ 3e−3mǫ.

Settingδ to match the right-hand side gives the sample complexitym ≥ 3
ǫ log 3

δ .

B. Biased coins [based on theorem of (Anthony and Bartlett, 1999)]

• Professor Moent has two coins in his pocket, coinxA and coinxB , both
slightly biased as follows:

Pr[xA = 0] = 1/2 − ǫ/2 Pr[xB = 0] = 1/2 + ǫ/2,
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Figure 1: Rectangle triangles.

where0 < ǫ < 1 is a small positive number and where 0 denotes head and
1 tail. He likes to play the following game with his students.He randomly
picks a coinx ∈ {xA, xB} from his pocket (uniformly), tosses itm times,
then reveals the sequence of 0s and 1s he obtained and asks which coin was
tossed.

The goal of this exercise is to determine how largem needs to be for a
student’s coin prediction error to be at mostδ>0.

1. Let S be a sample of sizem. Professor Moent’s best student, Oskar,
plays according to the decision rulefo : {0, 1}m →{xA, xB} defined
by fo(S) = xA iff N(S) < m/2, whereN(S) is the number of 0’s in
sampleS.

Supposem is even, then show that

error(fo) ≥
1

2
Pr

[

N(S) ≥ m

2

∣

∣

∣
x = xA

]

. (1)

By definition of the error of Oskar’s prediction rule,

error(fo) = Pr[fo(S) 6= x]

= Pr[fo(S) = xA ∧ x = xB] + Pr[fo(S) = xB ∧ x = xA]

= Pr
[

N(S) <
m

2

∣

∣

∣
x = xB

]

Pr[x = xB]+

Pr
[

N(S) ≥ m

2

∣

∣

∣
x = xA

]

Pr[x = xA]

=
1

2
Pr[N(S) <

m

2

∣

∣

∣
x = xB ] +

1

2
Pr

[

N(S) ≥ m

2

∣

∣

∣
x = xA

]

≥ 1

2
Pr

[

N(S) ≥ m

2

∣

∣

∣
x = xA

]

.
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2. Assumingm even, use the inequalities given in the appendix to show
that

error(fo) >
1

4

[

1 −
[

1 − e
−

mǫ2

1−ǫ2

]
1

2

]

. (2)

Note thatPr[N(S) ≥ m
2 |x = xA] = Pr[B(m, p) ≥ k], with p = 1/2 − ǫ/2,

k = m
2 , andmp ≤ k ≤ m(1 − p). Thus, by the binomial inequality of the

Appendix,

error(fo) ≥
1

2
Pr

[

N ≥ mǫ/2
√

1/4(1 − ǫ2)m

]

=
1

2
Pr

[

N ≥
√

mǫ√
1 − ǫ2

]

.

Using the second inequality of the Appendix, we now obtain

error(fo) ≥
1

4

(

1 −
√

1 − e−u2

)

,

with u =
√

mǫ√
1−ǫ2

, which coincides with (2).

3. Argue that ifm is odd, the probability can be lower bounded by the
one form+1 and conclude that for both odd and evenm,

error(fo) >
1

4

[

1 −
[

1 − e
−

2⌈m/2⌉ǫ2

1−ǫ2

]
1

2

]

. (3)

If m is odd, sincePr
[

N(S) ≥ m
2

∣

∣

∣
x = xA

]

≥ Pr
[

N(S) ≥ m+1
2

∣

∣

∣
x = xA

]

,

we can use the lower bound

error(fo) ≥
1

2
Pr

[

N(S) ≥ m + 1

2

∣

∣

∣
x = xA

]

.

Thus, in both cases we can use the lower bound expression with⌈m/2⌉ in-
stead ofm/2.

4. Using this bound, how large mustm be if Oskar’s error is at mostδ,
where0 < δ < 1/4. What is the asymptotic behavior of this lower
bound as a function ofǫ?

If error(fo) is at mostδ, then1
4

[

1 −
[

1 − e
− 2⌈m/2⌉ǫ2

1−ǫ2

]
1

2

]

< δ, which gives

e
− 2⌈m/2⌉ǫ2

1−ǫ2 < 1 − (1 − 4δ)2 = 4δ(2 − 4δ) = 8δ(1 − 2δ),

and

m > 2

⌈

1 − ǫ2

2ǫ2
log

1

8δ(1 − 2δ)

⌉

.

The lower bound varies as1ǫ2 .
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5. Show that no decision rulef : {0, 1}m →{xa, xB} can do better than
Oskar’s rulefo. Conclude that the lower bound of the previous question
applies to all rules.
Let f be an arbitrary rule and denote byFA the set of samples for which
f(S) = xA and byFB the complement. Then, by definition of the error,

error(f) =
∑

S∈FA

Pr[S ∧ xB] +
∑

S∈FB

Pr[S ∧ xA]

=
1

2

∑

S∈FA

Pr[S|xB] +
1

2

∑

S∈FB

Pr[S|xA]

=
1

2

∑

S∈FA

N(S)<m/2

Pr[S|xB] +
1

2

∑

S∈FA

N(S)≥m/2

Pr[S|xB ]+

1

2

∑

S∈FB

N(S)<m/2

Pr[S|xA] +
1

2

∑

S∈FB

N(S)≥m/2

Pr[S|xA].

Now, ifN(S) ≥ m/2, clearlyPr[S|xB ] ≥ Pr[S|xA]. Similarly, if N(S) <
m/2, clearlyPr[S|xA] ≥ Pr[S|xB ]. In view of these inequalities,error(f)
can be lower bounded as follows

error(f) ≥ 1

2

∑

S∈FA

N(S)<m/2

Pr[S|xB] +
1

2

∑

S∈FA

N(S)≥m/2

Pr[S|xA]+

1

2

∑

S∈FB

N(S)<m/2

Pr[S|xB] +
1

2

∑

S∈FB

N(S)≥m/2

Pr[S|xA]

=
1

2

∑

S : N(S)<m/2

Pr[S|xB ] +
1

2

∑

S : N(S)≥m/2

Pr[S|xA]

= error(fo).

Oskar’s rule is known as themaximum likelihoodsolution.

Appendix

0.1 Binomial inequality

Let B be a binomial(m, p) random variable with withp ≤ 1/2. Then, formp ≤
k ≤ m(1 − p),

Pr[B ≥ k] ≥ Pr

[

N ≥ k − mp
√

mp(1 − p)

]

, (4)

whereN is in standard normal form.

4



0.2 Tail bound

If N is a random variable following the standard normal distribution, then foru>0,

Pr[N ≥ u] ≥ 1

2

(

1 −
√

1 − e−u2

)

. (5)
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