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A. PAC Learning

e Let X =RR? with orthonormal basige; , e2) and consider the set of concepts
defined by the area inside a right triangdd3C' with two sides parallel to
the axes, Withﬁ/AB = e; and ITC/AC = e, and AB/AC = « for
some positive reak € R,. Show, using similar methods to those used in
the lecture slides for the axis-aligned rectangles, thatdlass can bée, ¢)-
PAC-learned from training data of size > (3/¢) log(3/9).

As in the case of axis-aligned rectangles, consider thrgresry, o, r3, along the
sides of the target concept as indicated in Figure 1. Note tia triangle formed

by the pointsd”, B”,C” is similar to ABC' (same angles) sincd” B” must be
parallel to AB, and similarly for the other sides.

Assume thaPr[ABC] > e, otherwise the statement would be trivial. Consider a
triangle A’ B'C’ similar to ABC' and consistent with the training sample and such
that it meets all three regions, ra, 73.

Since it meets;, the line A’ B’ must be belowA” B”. Since it mee/tsg\andrg, A
must be inr, and B’ in r3 (see Figure 1). Now, since the angléB’C” is equal

to A7 B”C”, C' must be necessarily abo¢® . This implies that triangled’ B’C’
containsA” B”C” and thuserror(A’B'C") < e.

error(A'B'C') > ¢ = Ji€{1,2,3}: AB'C'nr; =10.

Thus, by the union bound,
3
Prlerror(A’B'C") > €] < ZPr[A’B’C’/ Nry=0] <3(1—¢/3)™ < 3e M€,
=1
Settingd to match the right-hand side gives the sample complexity % log %

B. Biased coins[based on theorem of (Anthony and Bartlett, 1999)]

e Professor Moent has two coins in his pocket, coinand coinxzpg, both
slightly biased as follows:

Prlza=0=1/2—¢/2 Prlzag=0=1/2+¢/2,



Figure 1: Rectangle triangles.

where0 < e < 1 is a small positive number and where 0 denotes head and
1 tail. He likes to play the following game with his studenise randomly
picks a coinz € {z 4,2z} from his pocket (uniformly), tosses it times,
then reveals the sequence of 0s and 1s he obtained and asksoehi was

tossed.

The goal of this exercise is to determine how largeneeds to be for a
student’s coin prediction error to be at mast 0.

1. Let S be a sample of size:. Professor Moent's best student, Oskar,
plays according to the decision rufg: {0,1}" — {z4,xp} defined
by fo(S) = x4 iff N(S)<m/2, whereN(S) is the number of 0’s in
samples.

Supposen is even, then show that

error(f,) > %Pr [N(S) > %‘w = wA] . (1)

By definition of the error of Oskar’s prediction rule,

error(f,) = Pr[fo(S) # z]
t[fo(S) =za Ax=ap]+Pr[fo(S) =ap Az =x4]

r [N(S) < %‘x = a:B} Prlz = zp|+

Il
0 g

Pr {N(S) > %’x:x,ﬁl} Pr[z = z4]

N — N~

Pr[N(S) < %‘x:xg]—i-%Pr {N(S) > %‘x:x,ﬁl}

Pr {N(S) > %‘x:xA}.



2. Assumingm even, use the inequalities given in the appendix to show
that

1 13

error(fy) > 2 [1 [1 —e 1- 52} ] (2)
Note thatPr[N (S) > |z = xa] = Pr[B(m,p) > k], withp = 1/2 — ¢/2,
k=%, andmp < k < (1 p). Thus, by the binomial inequality of the
Appendix,

1 me/2 1 /me
> — > — - | == > )
error(f,) > 5 Pr lN N eQ)ml 5 Pr {N > m}

Using the second inequality of the Appendix, we now obtain
error(fo) > i(l —V1- e‘“z),

withu =

ﬂ%ez, which coincides with (2).
3. Argue that ifm is odd, the probability can be lower bounded by the
one form+1 and conclude that for both odd and even

error(f,) > i{l - [1 — 6_%] %} 3

If m is odd, sincePr [N(S) >mly = xA] > Pr [N(S) > ml ‘:v - xA],
we can use the lower bound

m+1
2

error(f,) > %Pr [N(S) > ’:c = xA} .

Thus, in both cases we can use the lower bound expressior mitl] in-

stead ofin /2.

4. Using this bound, how large must be if Oskar’s error is at most,
where0 < § < 1/4. What is the asymptotic behavior of this lower
bound as a function af?

2[m/2]e2 % . .
If error(f,) is at mos®, then [1 - [1 —e T } } < 0, which gives

2[m/2]e2

e 1= <1 —(1—46)* =46(2 — 46) = 85(1 — 20),

and
_ 2 |
2€2? 8

m>2[1 85(11—26)]

The lower bound varies a$.



5. Show that no decision rulg: {0,1}"™ — {x,, 25} can do better than
Oskar’s rulef,. Conclude that the lower bound of the previous question
applies to all rules.

Let f be an arbitrary rule and denote bi4 the set of samples for which
f(S) = x4 and byFp the complement. Then, by definition of the error,

error(f) = Z Pr[SAzp] + Z Pr[S Az 4]

SeFa SeFp
1 1
=3 > Pr[S|zs] + 5 > Pr(S|aa]
SeFa SeFp

SEFA SEFA
N(S)<m/2 N(S)>m/2
1 1
3 E Pr[S|zal + 3 E Pr[S|z a].
SeFg SeFp
N(S)<m/2 N(S)>m/2

Now, if N(S) > m/2, clearly Pr[S|xg] > Pr[S|za]. Similarly, if N(S) <
m/2, clearlyPr[S|z 4] > Pr[S|xg]. In view of these inequalitiesyror(f)
can be lower bounded as follows

1 1
error(f) > 5 Z Pr[S|zp] + 5 Z Pr[S|xal+
SEFa S€EFa
N(S)<m/2 N(S)>m/2
1 1
5 > PrfSlas]+ 5 > Pr[S|zal
SeFp SeFp
N(S)<m/2 N(S)>m/2
1 1
=5 > PiSlsl+g Y. PrSlud]
S:N(S)<m/2 S:N(S)>m/2
= error(f,).

Oskar’s rule is known as thmaximum likelihoodsolution.

Appendix
0.1 Binomial inequality

Let B be a binomial(m, p) random variable with wittp < 1/2. Then, formp <
k< m(1—p),

Pr[B > k] > Pr [N > ﬂ] (4)

mp(1 —p)
whereN is in standard normal form.



0.2 Tail bound

If N is arandom variable following the standard normal distrdny then foru > 0,

Pr[N > u] > %(1—\/1—6_“2>. (5)



