

Mehryar Mohri
 Foundations of Machine Learning
 Courant Institute of Mathematical Sciences
 Homework assignment 4 - solution
 Due: April 18th, 2008
 Credit: Ashish Rastogi, Afshin Rostamizadeh
 Ameet Talwalkar, and Eugene Weinstein.

1. **Problem 1:** Consider the following formulation of Adaboost. As in class, we start with a training set of labelled examples: $\{(\mathbf{x}_i, y_i)\}_{i=1,\dots,m}$, where $(\mathbf{x}_i, y_i) \in \chi \times \{-1, 1\}$. Let $\mathcal{H} = \{h_1, \dots, h_n\}$ be the set of weak classifiers where $h_j : \chi \rightarrow \{1, -1\}$ (note: we assume a finite number n of weak classifiers, where $m \ll n$). We define an $m \times n$ matrix \mathbf{M} where $M_{ij} = y_i h_j(\mathbf{x}_i)$, i.e., $M_{ij} = +1$ if training example i is classified correctly by weak classifier h_j , and -1 otherwise. Let $d_t, \lambda_t \in \mathbb{R}^n$, $\|d_t\|_1 = 1$ and $d_{t,i}(\lambda_{t,i})$ equal i^{th} component of $d_t(\lambda_t)$. Now we define the following algorithm:

- (a) **Input:** Matrix \mathbf{M} , Number of iterations t_{max}
- (b) **Initialize:** $\lambda_{1,j} = 0$ for $j = 1, \dots, n$
- (c) **Loop for** $t = 1, \dots, t_{max}$
 - i. $d_{t,i} = \frac{\exp(-(\mathbf{M}\lambda_t)_i)}{\sum_{k=1}^m \exp(-(\mathbf{M}\lambda_t)_k)}$ for $i = 1, \dots, m$
 - ii. $j_t \in \operatorname{argmax}_j (\mathbf{d}_t^T \mathbf{M})_j$
 - iii. $r_t = (\mathbf{d}_t^T \mathbf{M})_{j_t}$
 - iv. $\alpha_t = \frac{1}{2} \ln \left(\frac{1+r_t}{1-r_t} \right)$
 - v. $\lambda_{t+1} = \lambda_t + \alpha_t \mathbf{e}_{j_t}$, where \mathbf{e}_{j_t} is 1 in position j_t and 0 elsewhere.
- (d) **Output:** $\frac{\lambda_{t_{max}}}{\|\lambda_{t_{max}}\|_1}$

5 points Is this approach of explicitly using \mathbf{M} practical? Why/Why not?

Solution: Since n is large, it is not practical to store \mathbf{M} .

5 points What does $d_{1,i}$ equal for $t = 1$ for each value of i ?

Solution: $d_{1,i} = \frac{1}{m}$.

5 points In one sentence, explain what is happening in step 3a.

Solution: The distribution over the training samples is being updated and normalized based on the results from the weak classifier chosen in the previous round of boosting.

5 points $(\mathbf{d}_t^T \mathbf{M})_j$ is called the "edge" of weak classifier j at time t w.r.t. the training examples. What are the max and min values for the edge of a weak classifier at time t ?

Solution: $\min = -1$; $\max = 1$.

5 points What do large and small values of r_t tell us about the classifier?

Solution: r_t is the edge of the "best" weak classifier over distribution d_t . A larger (smaller) edge indicates a lower (higher) probability of error for this "best" weak classifier on the training set over d_t .

5 points How would you write the combined classifier $H(x)$ as defined in lecture in terms of $\lambda_{t_{max}}$?

Solution: Let $f = \sum_i^n \left(\frac{\lambda_{t_{max}}}{\|\lambda_{t_{max}}\|_1} \right)_i h_i$. Then $H(x) = \text{sign}(f(x))$.

Problem 2

The explicit mapping between d_t and D_{t+1} for the algorithm presented in Problem 1 can be defined as follows:

1. $j_t \in \text{argmax}_j (\mathbf{d}_t^T \mathbf{M})_j$
2. $r_t = (\mathbf{d}_t^T \mathbf{M})_{j_t}$
3. $d_{t+1,i} = \frac{d_{t,i}}{1 + M_{ij_t} r_t}$ for $i = 1, \dots, m$

5 points Let d_- be the probability of error of weak classifier h_{j_t} at iteration t . Define d_- as a summation over entries in \mathbf{M} .

Solution: $d_- = \sum_{i: M_{ij_t} = -1} d_{t,i}$.

5 points Write an expression for edge r_t in terms of d_- .

Solution:

$$r_t = \sum_{i: M_{ij_t} = 1} d_{t,i} - \sum_{i: M_{ij_t} = -1} d_{t,i} = (1 - d_-) - d_- = 1 - 2d_-.$$

10 points Assuming d_t is normalized, show that d_{t+1} remains normalized, i.e., $\sum_i^m d_{t+1,i} = 1$.

Solution: When $M_{ij_t} = 1$, $d_{t+1,i} = \frac{d_{t,i}}{1 + r_t}$ and when $M_{ij_t} = -1$, $d_{t+1,i} = \frac{d_{t,i}}{1 - r_t}$. Defining $d_+ = (1 - d_-)$ we have:

$$\sum_i^m d_{t+1,i} = \frac{1}{1 + r_t} d_+ + \frac{1}{1 - r_t} d_- \quad (1)$$

Rearranging expression for r_t from previous question, we have:

$$\sum_i^m d_{t+1,i} = \frac{(1+r_t)}{2(1+r_t)} + \frac{(1-r_t)}{2(1-r_t)} = 1 \quad (2)$$

10 points Show that Adaboost sets the edge of the previous weak classifier to 0, i.e., $(\mathbf{d}_{t+1}^T \mathbf{M})_{j_t} = 0$.

Solution: Based on the definition of an edge we have:

$$(\mathbf{d}_{t+1}^T \mathbf{M})_{j_t} = \sum_{i:M_{ij_t}=1} d_{t+1,i} - \sum_{i:M_{ij_t}=-1} d_{t+1,i} \quad (3)$$

Using the mapping defined at the beginning of this question, we get:

$$= \sum_{i:M_{ij_t}=1} d_{t,i} \frac{1}{1+r_t} - \sum_{i:M_{ij_t}=-1} d_{t,i} \frac{1}{1-r_t} \quad (4)$$

Using the definitions of d_+ and d_- and the expression for r_t in terms of d_- we can simplify:

$$= d_+ \frac{1}{1+r_t} - d_- \frac{1}{1-r_t} = \frac{1+r_t}{2} \frac{1}{1+r_t} - \frac{1-r_t}{2} \frac{1}{1-r_t} = 0 \quad (5)$$

Problem 3

5 points Observe the \mathbf{M} defined below, with 8 training points and 8 weak classifiers. As defined in Problem 1, the i^{th} column of \mathbf{M} represents weak classifier i applied to the training points.

$$\mathbf{M} = \begin{pmatrix} -1 & 1 & 1 & 1 & 1 & -1 & -1 & 1 \\ -1 & 1 & 1 & -1 & -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 & 1 & -1 & 1 & 1 \\ 1 & -1 & 1 & 1 & -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 & 1 & 1 & -1 \\ 1 & 1 & -1 & 1 & 1 & 1 & 1 & -1 \\ 1 & 1 & -1 & 1 & 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & 1 & -1 & -1 & 1 & -1 \end{pmatrix}$$

Assume that we start with the following initial distribution over the datapoints:

$$\mathbf{d}_1 = \left(\frac{3-\sqrt{5}}{8}, \frac{3-\sqrt{5}}{8}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{\sqrt{5}-1}{8}, \frac{\sqrt{5}-1}{8}, 0 \right)^T$$

Perform Adaboost using the algorithm defined in Problem 2 using \mathbf{M} , \mathbf{d}_1 , and $t_{max} = 7$. What weak classifier is picked at each round of boosting? Do you notice any pattern?

Solution: at $t = 1$ we have:

$$\mathbf{d}_1^T \mathbf{M} = \left(\frac{\sqrt{5} - 1}{2}, 0, \frac{3 - \sqrt{5}}{2}, \frac{3\sqrt{5} - 1}{12}, \frac{3\sqrt{5} - 1}{12}, \frac{3\sqrt{5} - 1}{12}, \frac{1}{2}, \frac{11 - 3\sqrt{5}}{12} \right)$$

so we pick weak classifier 1. Now, the distribution at round two is:

$$\mathbf{d}_2 = \left(\frac{1}{4}, \frac{1}{4}, \frac{\sqrt{5} - 1}{12}, \frac{\sqrt{5} - 1}{12}, \frac{\sqrt{5} - 1}{12}, \frac{3 - \sqrt{5}}{8}, \frac{3 - \sqrt{5}}{8}, 0 \right)^T$$

and the edges at round 2 are:

$$\mathbf{d}_2^T \mathbf{M} = \left(0, \frac{3 - \sqrt{5}}{2}, \frac{\sqrt{5} - 1}{2}, \frac{4 - \sqrt{5}}{6}, \frac{4 - \sqrt{5}}{6}, \frac{4 - \sqrt{5}}{6}, \frac{\sqrt{5} - 1}{4}, \frac{5 + \sqrt{5}}{12} \right)$$

so we pick weak classifier 3. Continuing this process, we then pick weak classifier 2 in round 3. However, now we observe that $\mathbf{d}_4 = \mathbf{d}_1$, hence we have found a cycle, in which we repeatedly select classifiers 1, 3, 2, 1, 3, 2, ...

5 points What is the norm-1 margin produced by Adaboost for this example?

Solution: $r_t = \frac{\sqrt{5}-1}{2}, t \in 1, 2, 3$. Thus, the coefficients used to combine classifiers in our example are: $[\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0, 0, 0, 0, 0]$ and the margin equals the minimum value in the following vector: $\mathbf{M} \times [\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0, 0, 0, 0, 0]^T$, which is $\frac{1}{3}$.

10 points Instead of using Adaboost, imagine we combined our classifiers using the following coefficients: $[2, 3, 4, 1, 2, 2, 1, 1] \times \frac{1}{16}$. What is the margin in this case? Does Adaboost maximize the margin?

Solution: $\mathbf{M} \times [2, 3, 4, 1, 2, 2, 1, 1]^T \times \frac{1}{16} = \frac{3}{8}$ for all training points. This margin is greater than the one generated by Adaboost. Therefore Adaboost does NOT always maximize the norm-1 margin.