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1. Problem 1: Consider the following formulation of Adaboost. As in
class, we start with a training set of labelled examples: {(xi, yi)}i=1,...,m,
where (xi, yi) ∈ χ× {−1, 1}. Let H = {h1, . . . , hn} be the set of weak
classifiers where hj : χ → {1,−1} (note: we assume a finite number
n of weak classifiers, where m � n). We define an m × n matrix M
where Mij = yihj(xi), i.e., Mij = +1 if training example i is classi-
fied correctly by weak classifier hj , and −1 otherwise. Let dt, λt ∈ Rn,
‖ dt ‖1= 1 and dt,i (λt,i) equal ith component of dt (λt). Now we define
the following algorithm:

(a) Input: Matrix M, Number of iterations tmax

(b) Initialize: λ1,j = 0 for j = 1, . . . , n

(c) Loop for t = 1, . . . , tmax

i. dt,i = exp(−(Mλt)i)Pm
k=1 exp(−(Mλt)k)

for i = 1, . . . ,m

ii. jt ∈ argmaxj(dT
t M)j

iii. rt = (dT
t M)jt

iv. αt = 1
2 ln

(
1+rt
1−rt

)
v. λt+1 = λt + αtejt, where ejt is 1 in position jt and 0

elsewhere.
(d) Output: λtmax

‖λtmax‖1

5 points Is this approach of explicitly using M practical? Why/Why not?
Solution: Since n is large, it is not practical to store M.

5 points What does d1,i equal for t = 1 for each value of i?
Solution: d1,i = 1

m .
5 points In one sentence, explain what is happening in step 3a.

Solution: The distribution over the training samples is being
updated and normalized based on the results from the weak
classifier chosen in the previous round of boosting.
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5 points (dT
t M)j is called the ”edge” of weak classifier j at time t w.r.t.

the training examples. What are the max and min values for
the edge of a weak classifier at time t?
Solution: min = −1; max = 1.

5 points What do large and small values of rt tell us about the classifier?
Solution: rt is the edge of the ”best” weak classifier over
distribution dt. A larger (smaller) edge indicates a lower
(higher) probability of error for this ”best” weak classifier on
the training set over dt.

5 points How would you write the combined classifier H(x) as defined in
lecture in terms of λtmax?
Solution: Let f =

∑n
i

( λtmax
‖λtmax‖1

)
i
hi. Then H(x) = sign(f(x)).

Problem 2

The explicit mapping between dt and Dt+1 for the algorithm presented in
Problem 1 can defined as follows:

1. jt ∈ argmaxj(dT
t M)j

2. rt = (dT
t M)jt

3. dt+1,i = dt,i

1+Mijtrt
for i = 1, . . . ,m

5 points Let d be the probability of error of weak classifier hjt at iteration t.
Define d as a summation over entries in M.

Solution: d =
∑

i:Mijt=−1
dt,i.

5 points Write an expression for edge rt in terms of d .

Solution:
rt =

∑
i:Mijt=1

dt,i −
∑

i:Mijt=−1
dt,i = (1− d )− d = 1− 2d .

10 points Assuming dt is normalized, show that dt+1 remains normalized, i.e.,∑m
i dt+1,i = 1.

Solution: When Mijt = 1, dt+1,i = dt,i

1+rt
and when

Mijt = −1, dt+1,i = dt,i

1−rt
. Defining d+ = (1− d ) we have:

m∑
i

dt+1,i =
1

1 + rt
d+ +

1
1− rt

d (1)
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Rearranging expression for rt from previous question, we have:
m∑
i

dt+1,i =
(1 + rt)
2(1 + rt)

+
(1− rt)
2(1− rt)

= 1 (2)

10 points Show that Adaboost sets the edge of the previous weak classifier to
0, i.e., (dT

t+1M)jt
= 0.

Solution: Based on the definition of an edge we have:

(dT
t+1M)jt

=
∑

i:Mijt=1

dt+1,i −
∑

i:Mijt=−1

dt+1,i (3)

Using the mapping defined at the beginning of this question, we get:

=
∑

i:Mijt=1

dt,i
1

1 + rt
−

∑
i:Mijt=−1

dt,i
1

1− rt
(4)

Using the definitions of d+ and d and the expression for rt in terms
of d we can simplify:

= d+
1

1 + rt
− d

1
1− rt

=
1 + rt

2
1

1 + rt
− 1− rt

2
1

1− rt
= 0 (5)

Problem 3

5 points Observe the M defined below, with 8 training points and 8 weak
classifiers. As defined in Problem 1, the ith column of M represents
weak classifier i applied to the training points.

M =



−1 1 1 1 1 −1 −1 1
−1 1 1 −1 −1 1 1 1
1 −1 1 1 1 −1 1 1
1 −1 1 1 −1 1 1 1
1 −1 1 −1 1 1 1 −1
1 1 −1 1 1 1 1 −1
1 1 −1 1 1 1 −1 1
1 1 1 1 −1 −1 1 −1


Assume that we start with the following initial distribution over the
datapoints:

d1 =
(

3−
√

5
8

,
3−

√
5

8
,
1
6
,
1
6
,
1
6
,

√
5− 1
8

,

√
5− 1
8

, 0
)T
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Perform Adaboost using the algorithm defined in Problem 2 using
M, d1, and tmax = 7. What weak classifier is picked at each round of
boosting? Do you notice any pattern?

Solution: at t = 1 we have:

dT
1 M =

(√
5− 1
2

, 0,
3−

√
5

2
,
3
√

5− 1
12

,
3
√

5− 1
12

,
3
√

5− 1
12

,
1
2
,
11− 3

√
5

12

)
so we pick weak classifier 1. Now, the distribution at round two is:

d2 =
(

1
4
,
1
4
,

√
5− 1
12

,

√
5− 1
12

,

√
5− 1
12

,
3−

√
5

8
,
3−

√
5

8
, 0

)T

and the edges at round 2 are:

dT
2 M =

(
0,

3−
√

5
2

,

√
5− 1
2

,
4−

√
5

6
,
4−

√
5

6
,
4−

√
5

6
,

√
5− 1
4

,
5 +

√
5

12

)
so we pick weak classifier 3. Continuing this process, we then pick
weak classifier 2 in round 3. However, now we observer that d4 = d1,
hence we have found a cycle, in which we repeatedly select classifiers
1, 3, 2, 1, 3, 2, ...

5 points What is the norm-1 margin produced by Adaboost for this example?

Solution: rt =
√

5−1
2 , t ∈ 1, 2, 3. Thus, the coefficients used to

combine classifiers in our example are: [13 , 1
3 , 1

3 , 0, 0, 0, 0, 0] and the
margin equals the minimum value in the following vector:
M× [13 , 1

3 , 1
3 , 0, 0, 0, 0, 0]T , which is 1

3 .

10 points Instead of using Adaboost, imagine we combined our classifiers using
the following coefficients: [2, 3, 4, 1, 2, 2, 1, 1]× 1

16 . What is the
margin in this case? Does Adaboost maximize the margin?

Solution: M× [2, 3, 4, 1, 2, 2, 1, 1]T × 1
16 = 3

8 for all training points.
This margin is greater than the one generated by Adaboost.
Therefore Adaboost does NOT always maximize the norm-1 margin.
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