1. **Problem 1:** Consider the following formulation of Adaboost. As in class, we start with a training set of labelled examples: \(\{(x_i, y_i)\}_{i=1}^{m} \), where \((x_i, y_i) \in \chi \times \{-1, 1\}\). Let \(\mathcal{H} = \{h_1, \ldots, h_n\} \) be the set of weak classifiers where \(h_j : \chi \to \{1, -1\} \) (note: we assume a finite number \(n \) of weak classifiers, where \(m \ll n \)). We define an \(m \times n \) matrix \(M \) where \(M_{ij} = y_i h_j(x_i) \), i.e., \(M_{ij} = +1 \) if training example \(i \) is classified correctly by weak classifier \(h_j \), and \(-1\) otherwise. Let \(d_t, \lambda_t \in \mathbb{R}^n \), \(\| d_t \|_1 = 1 \) and \(d_{t,i} (\lambda_{t,i}) \) equal \(i \)th component of \(d_t (\lambda_t) \). Now we define the following algorithm:

(a) **Input:** Matrix \(M \), Number of iterations \(t_{max} \)
(b) **Initialize:** \(\lambda_{1,j} = 0 \) for \(j = 1, \ldots, n \)
(c) **Loop for** \(t = 1, \ldots, t_{max} \)
 i. \(d_{t,i} = \frac{\exp(-\langle M \lambda_t \rangle_i)}{\sum_{k=1}^{n} \exp(-\langle M \lambda_t \rangle_k)} \) for \(i = 1, \ldots, m \)
 ii. \(j_t \in \arg\max_j (d_t^T M)_j \)
 iii. \(r_t = (d_t^T M)_{j_t} \)
 iv. \(\alpha_t = \frac{1}{2} \ln \left(\frac{1+r_t}{1-r_t} \right) \)
 v. \(\lambda_{t+1} = \lambda_t + \alpha_t e_{j_t} \), where \(e_{j_t} \) is 1 in position \(j_t \) and 0 elsewhere.
(d) **Output:** \(\frac{\lambda_{t_{max}}}{\| \lambda_{t_{max}} \|_1} \)

5 points Is this approach of explicitly using \(M \) practical? Why/Why not?

Solution: Since \(n \) is large, it is not practical to store \(M \).

5 points What does \(d_{1,i} \) equal for \(t = 1 \) for each value of \(i \)?

Solution: \(d_{1,i} = \frac{1}{m} \).

5 points In one sentence, explain what is happening in step 3a.

Solution: The distribution over the training samples is being updated and normalized based on the results from the weak classifier chosen in the previous round of boosting.
5 points \((d_t^TM)_{jt} \) is called the "edge" of weak classifier \(j \) at time \(t \) w.r.t. the training examples. What are the max and min values for the edge of a weak classifier at time \(t \)?

Solution: \(\min = -1; \max = 1. \)

5 points What do large and small values of \(r_t \) tell us about the classifier?

Solution: \(r_t \) is the edge of the "best" weak classifier over distribution \(d_t \). A larger (smaller) edge indicates a lower (higher) probability of error for this "best" weak classifier on the training set over \(d_t \).

5 points How would you write the combined classifier \(H(x) \) as defined in lecture in terms of \(\lambda_{t_{\text{max}}} \)?

Solution: Let \(f = \sum_i^n (\frac{\lambda_{t_{\text{max}}}}{||\lambda_{t_{\text{max}}}||_1})_i h_i \). Then \(H(x) = \text{sign}(f(x)) \).

Problem 2

The explicit mapping between \(d_t \) and \(D_{t+1} \) for the algorithm presented in Problem 1 can defined as follows:

1. \(j_t \in \arg\max_j (d_t^TM)_{jt} \)
2. \(r_t = (d_t^TM)_{jt} \)
3. \(d_{t+1,i} = \frac{d_{t,i}}{1 + M_{ij}r_t} \) for \(i = 1, \ldots, m \)

5 points Let \(d_- \) be the probability of error of weak classifier \(h_{jt} \) at iteration \(t \). Define \(d_- \) as a summation over entries in \(M \).

Solution: \(d_- = \sum_{i:M_{ij}=-1} d_{t,i} \).

5 points Write an expression for edge \(r_t \) in terms of \(d_- \).

Solution:
\[
\begin{align*}
r_t &= \sum_{i:M_{ij}=1} d_{t,i} - \sum_{i:M_{ij}=-1} d_{t,i} = (1 - d_-) - d_- = 1 - 2d_-.
\end{align*}
\]

10 points Assuming \(d_t \) is normalized, show that \(d_{t+1} \) remains normalized, i.e., \(\sum_i d_{t+1,i} = 1 \).

Solution: When \(M_{ij} = 1, d_{t+1,i} = \frac{d_{t,i}}{1 + r_t} \) and when \(M_{ij} = -1, d_{t+1,i} = \frac{d_{t,i}}{1 - r_t} \). Defining \(d_+ = (1 - d_-) \) we have:
\[
\sum_i d_{t+1,i} = \frac{1}{1 + r_t} d_+ + \frac{1}{1 - r_t} d_-.
\]
Rearranging expression for \(r_t \) from previous question, we have:

\[
\sum_{i}^{m} d_{t+1,i} = \frac{(1 + r_t)}{2(1 + r_t)} + \frac{(1 - r_t)}{2(1 - r_t)} = 1
\]

(2)

10 points Show that Adaboost sets the edge of the previous weak classifier to 0, i.e., \((d_{t+1}^T M)_{jt} = 0\).

Solution: Based on the definition of an edge we have:

\[
(d_{t+1}^T M)_{jt} = \sum_{i:M_{ijt}=1} d_{t+1,i} - \sum_{i:M_{ijt}=-1} d_{t+1,i}
\]

(3)

Using the mapping defined at the beginning of this question, we get:

\[
= \sum_{i:M_{ijt}=1} d_{t,i} \frac{1}{1 + r_t} - \sum_{i:M_{ijt}=-1} d_{t,i} \frac{1}{1 - r_t}
\]

(4)

Using the definitions of \(d_+ \) and \(d_- \) and the expression for \(r_t \) in terms of \(d_0 \) we can simplify:

\[
= d_+ \frac{1}{1 + r_t} - d_- \frac{1}{1 - r_t} = \frac{1 + r_t}{2} \frac{1}{1 + r_t} - \frac{1 - r_t}{2} \frac{1}{1 - r_t} = 0
\]

(5)

Problem 3

5 points Observe the \(M \) defined below, with 8 training points and 8 weak classifiers. As defined in Problem 1, the \(i^{th} \) column of \(M \) represents weak classifier \(i \) applied to the training points.

\[
M = \begin{pmatrix}
-1 & 1 & 1 & 1 & 1 & -1 & -1 & 1 \\
-1 & 1 & 1 & -1 & -1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 & 1 & -1 & 1 & 1 \\
1 & -1 & 1 & 1 & -1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 \\
1 & 1 & -1 & 1 & 1 & 1 & 1 & -1 \\
1 & 1 & -1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 \\
\end{pmatrix}
\]

Assume that we start with the following initial distribution over the datapoints:

\[
d_1 = \left(3 - \sqrt{5}, \frac{3 - \sqrt{5}}{8}, \frac{1}{6}, \frac{1}{6}, \frac{\sqrt{5} - 1}{8}, \frac{\sqrt{5} - 1}{8}, 0\right)^T
\]
Perform Adaboost using the algorithm defined in Problem 2 using M, d_1, and $t_{\text{max}} = 7$. What weak classifier is picked at each round of boosting? Do you notice any pattern?

Solution: at $t = 1$ we have:

$$d_1^T M = \left(\frac{\sqrt{5} - 1}{2}, 0, \frac{3 - \sqrt{5}}{2}, \frac{3\sqrt{5} - 1}{12}, \frac{3\sqrt{5} - 1}{12}, \frac{3\sqrt{5} - 1}{12}, \frac{1}{2}, \frac{11 - 3\sqrt{5}}{12} \right)$$

so we pick weak classifier 1. Now, the distribution at round two is:

$$d_2 = \left(\frac{1}{4}, \frac{1}{4}, \frac{\sqrt{5} - 1}{12}, \frac{\sqrt{5} - 1}{12}, \frac{3 - \sqrt{5}}{8}, \frac{3 - \sqrt{5}}{8}, 0 \right)^T$$

and the edges at round 2 are:

$$d_2^T M = \left(0, \frac{3 - \sqrt{5}}{2}, \frac{\sqrt{5} - 1}{2}, \frac{4 - \sqrt{5}}{6}, \frac{4 - \sqrt{5}}{6}, \frac{4 - \sqrt{5}}{6}, \frac{\sqrt{5} - 1}{4}, \frac{5 + \sqrt{5}}{12} \right)$$

so we pick weak classifier 3. Continuing this process, we then pick weak classifier 2 in round 3. However, now we observer that $d_4 = d_1$, hence we have found a cycle, in which we repeatedly select classifiers 1, 3, 2, 1, 3, 2, ...

5 points What is the norm-1 margin produced by Adaboost for this example?

Solution: $r_t = \frac{\sqrt{5} - 1}{2}, t \in 1, 2, 3$. Thus, the coefficients used to combine classifiers in our example are: $[\frac{1}{3}, \frac{1}{3}, 0, 0, 0, 0, 0]$ and the margin equals the minimum value in the following vector:

$M \times [\frac{1}{3}, \frac{1}{3}, 0, 0, 0, 0]^T$, which is $\frac{1}{3}$.

10 points Instead of using Adaboost, imagine we combined our classifiers using the following coefficients: $[2, 3, 4, 1, 2, 2, 1, 1] \times \frac{1}{16}$. What is the margin in this case? Does Adaboost maximize the margin?

Solution: $M \times [2, 3, 4, 1, 2, 2, 1, 1]^T \times \frac{1}{16} = \frac{3}{8}$ for all training points. This margin is greater than the one generated by Adaboost. Therefore Adaboost does NOT always maximize the norm-1 margin.