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1. SVMs:

(a) Download and install libsvm from

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

5 points Download the pendigits data set. The task is to predict the digit label (0 −
9) based on the features computed over the digit image. The data is comma-
delimited, with the last item being the label. Normalize the input data so that
all feature values are between −1 and 1.
The binary svm-scale should be used to normalize the data.

15 points Train and test a SVM using polynomial kernels and 10-fold cross validation. For
each setting of the polynomial degree d = 1, 2, 3, 4, plot the average error as the
data set size is changed from 50 to 1000 data points (keep the first n points of
the data set).
The accuracy plot appears in Figure 1.
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Figure 1: Accuracy achieved with polynomial kernels of varying degrees.

10 points Repeat the learning experiment with radial basis function (RBF) kernels. Use the
script grid.py packaged with libsvm to do a sweep over the space of parameters
(C, γ), where C is the SVM learning parameter and γ is the coefficient in the
RBF kernel. Report the values of C and γ that yield the highest accuracy under
10-fold cross validation. Also report the accuracy achieved.
The following command should yield a good sweep of the parameter space:
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grid.py -log2g -5,5,1 -v 10 -log2c -5,5,1 data.txt

This highest accuracy achieved with this sweep is 99.0%, and the optimal pa-
rameter setting is C = 4 and γ = 0.5.

10 points Let (C∗, γ∗) be the best parameters found in the previous exercise. With C fixed
at C∗, plot the 10-fold cross-validation accuracy as the γ parameter is varied.
The plot appears in Figure 2.
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Figure 2: Accuracy achieved with RBF kernel for various settings of γ.

30 points Suppose you wish to use support vector machines to solve a learning problem
where some training data points were more important than others. Assume each
training point consists of a triplet (xi, yi, pi), where 0 ≤ pi ≤ 1 is the importance
of the ith point. Rewrite the primal SVM constrained optimization problem so
that the penalty for mis-labeling a point xi is scaled by the priority pi. Then
carry this modification through the derivation of the dual solution.
The modified primal optimization problem can be written as

minimize 1
2 ||w||2 + C

∑m
i=1 ξipi

subject to yi[w · xi + b] ≥ 1− ξi

The Lagrangian holding for all w, b, αi ≥ 0, βi ≥ 0 is then

L(w, b, α) =
1
2
||w||2 + C

m∑

i=1

ξipi (1)

−
m∑

i=1

αi[yi(w · xi + b)− 1 + ξi]−
m∑

i=1

βiξi

Then ∂L
∂w and ∂L

∂b are the same as for the regular non-separable SVM optimization
problem. We also have ∂L

∂ξi
= Cpi−αi− βi. Thus to satisfy the KKT conditions

we have for all i ∈ [1,m],
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w =
m∑

i=1

αiyixi (2)

m∑

i=1

αiyi = 0 (3)

αi + βi = Cpi (4)
αi[yi(w · xi + b)− 1 + ξi] = 0 (5)

βiξi = 0 (6)

Plugging Equation 2 into Equation 1, we get

L =
1
2
||

m∑

i=1

αiyixi||2 + C
m∑

i=1

ξipi −
m∑

i,j=1

αiαjyiyj(xi · xj) (7)

−
m∑

i=1

αiyib +
m∑

i=1

αi −
∑

αiξi −
m∑

i=1

βiξi

Using Equation 4, we can simplify:

L =
m∑

i=1

αi − 1
2
||

m∑

i=1

αiyixi||2

meaning that the objective function is the same as in the regular SVM problem.
The difference is in the constraints on the optimization. Recall that our dual
form holds for βi ≥ 0. Using again equation 4, our optimization problem is to
maximize L subject to the constraints:

∀i ∈ [1,m], 0 ≤ αi ≤ Cpi ∧
m∑

i=1

αiyi = 0.

2. Kernels:

10 points Given a data set x1, . . . , xm and a kernel k(xi, xj) with a Gram matrix K such
that k(xi, xj) = Kij , show that a map Φ(·) can be given such that if K is positive
semidefinite then k(xi, xj) = Φ(xi) · Φ(xj).
Because K is positive semidefinite, it can be diagonalized as K = SΛS> where Λ
is a diagonal matrix of K’s eigenvalues and S is the matrix of K’s eigenvectors.
Further decomposing, we get K = SΛ1/2Λ1/2S>. We then have

k(xi, xj) = Kij = (SΛS>)ij = (Λ1/2Si) · (Λ1/2Sj)

where Si is the ith eigenvector of K. Thus the kernel map Φ(xi) = Λ1/2Si clearly
satisfies the desired condition.
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10 points Show the converse of the previous statement: that if there exists a mapping Φ(x),
then the matrix K is positive semidefinite.
For any α1, . . . αm ∈ Rm, we have

m∑

i,j=1

αiαjKij =

∣∣∣∣∣

∣∣∣∣∣
m∑

i=1

αiΦ(xi)

∣∣∣∣∣

∣∣∣∣∣
2

≥ 0

10 points Let us define a difference kernel as k(x, x′) = ||x−x′|| for x, x′ ∈ Rm. Show that
this kernel is not positive definite symmetric (PDS).
Consider the Gram matrix defined as Kij = k(xi, xj). It is clear that K will have
all zeros on the diagonal. Hence tr(K) = 0. When K 6= 0, this means it must
have at least one negative eigenvalue. Hence k is not PDS.

10 points The cosine kernel is defined as k(x, x′) = cos∠(x, x′). Show that the cosine
kernel is PDS.
Rewriting the cosine in terms of the dot product, we have

k(x, x′) = cos ∠(x, x′) =
x · x′
|x||x′|

Thus, the cosine kernel is just a scaling of the standard dot product, which is a
PDS kernel. Hence, the cosine kernel is also PDS.
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