Mehryar Mohri

Foundations of Machine Learning

Courant Institute of Mathematical Sciences

Homework assignment 3 - solution

Credit: Ashish Rastogi, Afshin Rostamizadeh
Ameet Talwalkar, and Eugene Weinstein.

1. SVMs:

(a)

5 points

15 points

Download and install 1ibsvm from
http://www.csie.ntu.edu.tw/"cjlin/libsvm/

Download the pendigits data set. The task is to predict the digit label (0 —
9) based on the features computed over the digit image. The data is comma-
delimited, with the last item being the label. Normalize the input data so that
all feature values are between —1 and 1.

The binary svm-scale should be used to normalize the data.

Train and test a SVM using polynomial kernels and 10-fold cross validation. For
each setting of the polynomial degree d = 1,2, 3,4, plot the average error as the
data set size is changed from 50 to 1000 data points (keep the first n points of
the data set).

The accuracy plot appears in Figure 1.
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Figure 1: Accuracy achieved with polynomial kernels of varying degrees.

10 points

Repeat the learning experiment with radial basis function (RBF) kernels. Use the
script grid. py packaged with 1ibsvm to do a sweep over the space of parameters
(C,7), where C is the SVM learning parameter and 7 is the coefficient in the
RBF kernel. Report the values of C' and ~ that yield the highest accuracy under
10-fold cross validation. Also report the accuracy achieved.

The following command should yield a good sweep of the parameter space:



grid.py -log2g -5,5,1 -v 10 -log2c -5,5,1 data.txt

This highest accuracy achieved with this sweep is 99.0%, and the optimal pa-
rameter setting is C' = 4 and v = 0.5.

10 points Let (C*,~*) be the best parameters found in the previous exercise. With C fixed
at C”, plot the 10-fold cross-validation accuracy as the « parameter is varied.
The plot appears in Figure 2.
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Figure 2: Accuracy achieved with RBF kernel for various settings of ~.

30 points Suppose you wish to use support vector machines to solve a learning problem
where some training data points were more important than others. Assume each
training point consists of a triplet (z;, y;, p;), where 0 < p; < 1 is the importance
of the ith point. Rewrite the primal SVM constrained optimization problem so
that the penalty for mis-labeling a point z; is scaled by the priority p;. Then
carry this modification through the derivation of the dual solution.

The modified primal optimization problem can be written as

minimize %Hw| 2+CY " i
subject to y;[w-z; +b] >1-¢;
The Lagrangian holding for all w, b, o; > 0, 5; > 0 is then

1 m
L(w,b,a) = Slwl?+C) &pi (1)
=1

_Z [yl(w xl—i_b _1+£z Z/Bzéz
i=1

Then 8—L and 8—L are the same as for the regular non-separable SVM optimization
problem We also have 2 g = Cp; — a; — B;. Thus to satisfy the KK'T conditions
we have for all i € [1,m],



m
wo = Zaz‘yiﬂfz‘ (2)
i=1

d iy = 0 (3)
i=1

a;+ 6 = Cp; (4)
ailyi(w-z; +b) —1+&] =0 (5)
Bi& =0 (6)

Plugging Equation 2 into Equation 1, we get

1 m m m
L = Sl ZloéiyifvzHQ + C'Zl&pi =Y iy (- xj) (7)
1= 1=

- Z a;y;b + Z o — Z ;& — Z/Bzgz
=1 =1 =1

Using Equation 4, we can simplify:

m

1 m
L=) a;- 5“20@%%”2
=1

=1

meaning that the objective function is the same as in the regular SVM problem.
The difference is in the constraints on the optimization. Recall that our dual
form holds for 8; > 0. Using again equation 4, our optimization problem is to
maximize L subject to the constraints:

m
Vi€ [1,m],0 <a; <Cpi Ay auyi =0.
=1

2. Kernels:

10 points Given a data set x1,..., 2, and a kernel k(z;, z;) with a Gram matrix K such
that k(x;,x;) = Kjj;, show that a map ®(-) can be given such that if K is positive
semidefinite then k(z;, z;) = ®(x;) - ®(x;).

Because K is positive semidefinite, it can be diagonalized as K = SAST where A
is a diagonal matrix of K’s eigenvalues and S is the matrix of K’s eigenvectors.
Further decomposing, we get K = SAY2AY28T. We then have

where S; is the ith eigenvector of K. Thus the kernel map ®(z;) = A'/2S; clearly
satisfies the desired condition.



10 points

10 points

10 points

Show the converse of the previous statement: that if there exists a mapping ®(x),
then the matrix K is positive semidefinite.

For any o, ...ay, € R™, we have

m m 2
Z OZZ'O[J'KZ'J' == ZO&Z(I)(:L‘l) Z 0
ij=1 i=1
Let us define a difference kernel as k(z,z') = ||x — /|| for z,2’ € R™. Show that

this kernel is not positive definite symmetric (PDS).

Consider the Gram matrix defined as K;; = k(x;, ;). It is clear that K will have
all zeros on the diagonal. Hence tr(K) = 0. When K # 0, this means it must
have at least one negative eigenvalue. Hence k is not PDS.

The cosine kernel is defined as k(x,2') = cos Z(x,2’). Show that the cosine
kernel is PDS.

Rewriting the cosine in terms of the dot product, we have
k(x,2") = cos Z(x,2') = oz
’ ’ |||'|

Thus, the cosine kernel is just a scaling of the standard dot product, which is a
PDS kernel. Hence, the cosine kernel is also PDS.



