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1. Probability Review [30 points]:

(a) [10 points] Imagine you are given one fair die, and you need to
decide which task is harder: (i) guessing the value of one die toss
or (ii) tossing the die twice and getting the same value twice.
Given that the die is fair (every side has weight 1/6), does event
(i) have a greater chance of success or event (ii), or do they have
the same probability of success? Make sure to give justification.

Solution: Successfully guessing the outcome of either event is
equally likely. Clearly, guessing the value of a single fair toss is
1/6. To see that the probability of rolling the same value twice,
let X1 denote the outcome of the first toss and X2 denote the
value of the second toss. Then, we are interested in the value of
Pr(X1 = X2) =

∑

6

i=1
Pr(X1 = i ∧ X2 = i). Notice each toss is

independent and identical, so we can write

6
∑

i=1

Pr(X1 = i ∧ X2 = i) =
6

∑

i=1

Pr(X1 = i) Pr(X2 = i)

=
6

∑

i=1

1/6 · 1/6

= 1/6

(b) [5 points] We will now generalize this result to n-sided dice with
any (possibly non-uniform) distribution. First prove the follow-
ing useful fact, for any α1, α2, . . . , αn such that

∑

i αi = 1, the
following holds,

0 ≤
n

∑

i=1

(αi − 1/n)2 =
n

∑

i=1

α2
i − 1/n
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Solution: The inequality is true, because a sum of squares is
always positive. To show the equality, we simply expand the
terms and use the fact

∑

i αi = 1.

n
∑

i=1

(αi − 1/n)2 =
n

∑

i=1

(α2
i −

2

n
αi + 1/n2)

=

n
∑

i=1

α2
i −

2

n

n
∑

i=1

αi +

n
∑

i=1

1/n2

=

n
∑

i=1

α2
i − 2/n + 1/n

=
n

∑

i=1

α2
i − 1/n

(c) [15 points] Let X1 be the value of the first toss, and X2 be the
value of the second toss. Show that Pr(X1 = X2) ≥ 1/n (hint:
use part b). For what distribution is the inequality tight?

Solution: Generalizing part (a) in a straight-forward manner,
we get

Pr(X1 = X2) =

n
∑

i=1

Pr(X1 = i ∧ X2 = i)

=

n
∑

i=1

Pr(X1 = i) Pr(X2 = i) (independent)

=
n

∑

i=1

Pr(X1 = i)2 (and identical)

Notice that,
∑n

i=1
Pr(X1 = i) = 1 by definition, so we can think

of Pr(X1 = i) = αi. From part (b), we know that
∑n

i=1
α2

i ≥ 1/n.
As seen in part (a), the uniform distribution (αi = 1/n) achieves
equality.

2. Concentration Bounds [30 points]:

(a) [10 points] Given a sample of m bounded points X = (x1, x2, . . . , xm),
∀i, |xi| ≤ M , define the function

f(X) =
1

m

∑

i

xi.
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Can you give a bound on the probability Pr[|f(X)−E[f(X)] ≥ ǫ]?

Solution: This is simply a straight-forward application of Ho-
effding’s inequality. We can think of our function f as the sum of
random variables xi/m, and we know the value of each variable
is bounded by 2M/m. Hoeffding’s inequality give the following
bound,

Pr[|f(X) − E[[]f(X)]| > ǫ] ≤ 2 exp

( −2ǫ2

∑m
i=1

(2M/m)2

)

= 2exp

(−2ǫ2m

4M2

)

(b) [10 points] Let X and X ′ be two sets of size m that differ in
exactly one point. That is, |X ∩X ′| = m− 1. We say a function
h is stable if for all such X,X ′, |h(X) − h(X ′)| ≤ g(m) for some
decreasing function g. How quickly does g need to decrease as a
function of m in order for McDiarmid’s inequality to provide a
bound on the event Pr[|h(X) − E[h(X)]| ≥ ǫ] that converges to
zero as m → ∞?

Solution: In order for McDiarmid’s inequality to converge, we
need g(m) ∈ o(1/

√
m). In the case g(m) = 1/m1/2+δ , we can

apply McDiarmid’s inequality with each ci = 1/m1/2+δ ,

Pr[|h(X) − EX [h(X)]| ≥ ǫ] ≤ 2 exp

( −2ǫ2

∑m
i=1

(m−1/2m−δ)2

)

= 2exp
(

−2ǫ2m2δ
)

Clearly we need δ > 0 in order for the bound to converge to zero
as m tends to infinity.

(c) [10 points] Is the function f from part (a) stable (still assuming
the bound |xi| ≤ M,∀i)? Will McDiarmid’s inequality provide
provide a convergent bound? If so give the bound. Now define
the function f ′(X) = max(X), is f ′ stable? Can you give a bound
with McDiarmid’s inequality?
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Solution: The function from part (a) is stable, with g(m) =
2M/m (changing a single bounded point, will change the aver-
age by at most 2M/m). Indeed, from part (b), we can reason
that McDiarmid’s inequality, with ci = 2M/m will give a con-
vergent bound. In fact, in this case, the bound is exactly the
same as the one given by Hoeffding’s inequality. Here we see that
McDiarmid’s inequality generalized Hoeffding’s.

The function f ′ is not stable, the only bound that we can give is
g(m) ≤ M (without assuming anything else about the distribu-
tion). We cannot get a useful bound with McDiarmid’s inequality.

3. PAC Learning [40 points + 20 points]: Here we will consider
an alternative PAC learning scenario, called the two-oracle model.
Imagine you are given the ability to explicitly ask for a positive or
negative sample, which are drawn from different distributions D+

and D− respectively. A concept is efficiently PAC-learnable if there
exists an algorithm L that can generate a hypothesis h, such that
Prx∼D+

[h(x) = 0] ≤ ǫ and Prx∼D
−

[h(x) = 1] ≤ ǫ with confidence
(1 − δ), after sampling m = poly(1/ǫ, 1/δ) points.

(a) [40 points] Show that if a problem is efficiently PAC-learnable in
the classic sense, it is also always efficiently PAC-learnable in the
two-oracle model.

Solution: Let c be the true concept, then notice that

error(h) = Pr
x

[h(x) 6= c(x)]

= Pr
x

[h(x) = 1 ∧ c(x) = 0] + Pr
x

[h(x) = 0 ∧ c(x) = 1]

= Pr
x

[h(x) = 1|c(x) = 0]Pr
x

[c(x) = 0] +

Pr
x

[h(x) = 0|c(x) = 1]Pr
x

[c(x) = 1].

Let 0 < ǫ < 1/2, then by assumption we know there exists an
algorithm L that will efficiently produce a hypothesis h, such that
error(h) ≤ ǫ/2 with confidence 1 − δ. From the above series of
equalities this implies,

Pr
x

[h(x) = 1|c(x) = 0]Pr
x

[c(x) = 0]+

Pr
x

[h(x) = 0|c(x) = 1]Pr
x

[c(x) = 1] ≤ ǫ/2. (1)
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Thus, in the two-oracle model, we can simulate the classic sce-
nario by simply treating points from either distribution D+ or
D− as coming from the same underlying distribution. If we draw
points uniformly from the negative and positive oracle we will
have Prx[c(x) = 0] = Prx[c(x) = 1] = 1/2, which would imply
Prx[h(x) = 1|c(x) = 0] = Prx∼D

−

[h(x) = 1] ≤ ǫ, and similarly
Prx[h(x) = 0|c(x) = 1] = Prx∼D+

[h(x) = 0] ≤ ǫ.

(b) [20 points] (Bonus) Show that the reverse direction is also true.
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