

Mehryar Mohri

Foundations of Machine Learning

Courant Institute of Mathematical Sciences

Homework assignment 4

Due: April 18th, 2008

Credit: Ashish Rastogi, Afshin Rostamizadeh

Ameet Talwalkar, and Eugene Weinstein.

1. Problem 1: Consider the following formulation of Adaboost. As in class, we start with a training set of labelled examples: $\{(\mathbf{x}_i, y_i)\}_{i=1,\dots,m}$, where $(\mathbf{x}_i, y_i) \in \chi \times \{-1, 1\}$. Let $\mathcal{H} = \{h_1, \dots, h_n\}$ be the set of weak classifiers where $h_j : \chi \rightarrow \{1, -1\}$ (note: we assume a finite number n of weak classifiers, where $m \ll n$). We define an $m \times n$ matrix \mathbf{M} where $M_{ij} = y_i h_j(\mathbf{x}_i)$, i.e., $M_{ij} = +1$ if training example i is classified correctly by weak classifier h_j , and -1 otherwise. Let $\mathbf{d}_t, \lambda_t \in \mathbb{R}^n$, $\|\mathbf{d}_t\|_1 = 1$ and $d_{t,i}$ (respectively $\lambda_{t,i}$) equal i^{th} component of \mathbf{d}_t (respectively λ_t). Let \mathbf{d}^T denote the transpose of the vector \mathbf{d} . Now we define the following algorithm:

- (a) **Input:** Matrix \mathbf{M} , Number of iterations t_{max}
- (b) **Initialize:** $\lambda_{1,j} = 0$ for $j = 1, \dots, n$
- (c) **Loop for** $t = 1, \dots, t_{max}$
 - i. $d_{t,i} = \frac{\exp(-(\mathbf{M}\lambda_t)_i)}{\sum_{k=1}^m \exp(-(\mathbf{M}\lambda_t)_k)}$ for $i = 1, \dots, m$
 - ii. $j_t \in \text{argmax}_j (\mathbf{d}_t^T \mathbf{M})_j$
 - iii. $r_t = (\mathbf{d}_t^T \mathbf{M})_{j_t}$
 - iv. $\alpha_t = \frac{1}{2} \ln \left(\frac{1+r_t}{1-r_t} \right)$
 - v. $\lambda_{t+1} = \lambda_t + \alpha_t \mathbf{e}_{j_t}$, where \mathbf{e}_{j_t} is 1 in position j_t and 0 elsewhere.
- (d) **Output:** $\frac{\lambda_{t_{max}}}{\|\lambda_{t_{max}}\|_1}$
 - (a) Is this approach of explicitly using \mathbf{M} practical? Why/Why not?
 - (b) What does $d_{1,i}$ equal for $t = 1$ for each value of i ?
 - (c) In one sentence, explain what is happening in step (c).i.

(d) $(\mathbf{d}_t^T \mathbf{M})_j$ is called the "edge" of weak classifier j at time t w.r.t. the training examples. What are the max and min values for the edge of a weak classifier at time t ?

(e) What do large and small values of r_t tell us about the classifier?

(f) How would you write the combined classifier $H(x)$ as defined in lecture in terms of $\lambda_{t_{max}}$?

2. **Problem 2:** The explicit mapping between \mathbf{d}_t and D_{t+1} for the algorithm presented in Problem 1 can be defined as follows:

- (a) $j_t \in \operatorname{argmax}_j (\mathbf{d}_t^T \mathbf{M})_j$
- (b) $r_t = (\mathbf{d}_t^T \mathbf{M})_{j_t}$
- (c) $d_{t+1,i} = \frac{d_{t,i}}{1 + M_{i,j_t} r_t}$ for $i = 1, \dots, m$
- (a) Let d_{-} be the probability of error of weak classifier h_{j_t} at iteration t . Define d_{-} as a summation over entries in \mathbf{M} .
- (b) Write an expression for edge r_t in terms of d_{-} .
- (c) Assuming \mathbf{d}_t is normalized, show that d_{t+1} remains normalized, i.e., $\sum_i^m d_{t+1,i} = 1$.
- (d) Show that Adaboost sets the edge of the previous weak classifier to 0, i.e., $(\mathbf{d}_{t+1}^T \mathbf{M})_{j_t} = 0$.

3. **Problem 3:**

(a) Observe the \mathbf{M} defined below, with 8 training points and 8 weak classifiers. As defined in Problem 1, the i^{th} column of \mathbf{M} represents weak classifier i applied to the training points.

$$\mathbf{M} = \begin{pmatrix} -1 & 1 & 1 & 1 & 1 & -1 & -1 & 1 \\ -1 & 1 & 1 & -1 & -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 & 1 & -1 & 1 & 1 \\ 1 & -1 & 1 & 1 & -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 & 1 & 1 & -1 \\ 1 & 1 & -1 & 1 & 1 & 1 & 1 & -1 \\ 1 & 1 & -1 & 1 & 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & 1 & -1 & -1 & 1 & -1 \end{pmatrix}$$

Assume that we start with the following initial distribution over the datapoints:

$$\mathbf{d}_1 = \left(\frac{3 - \sqrt{5}}{8}, \frac{3 - \sqrt{5}}{8}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{\sqrt{5} - 1}{8}, \frac{\sqrt{5} - 1}{8}, 0 \right)^T$$

Perform Adaboost using the algorithm defined in Problem 2 using \mathbf{M} , \mathbf{d}_1 , and $t_{max} = 7$. What weak classifier is picked at each round of boosting? Do you notice any pattern?

- (b) What is the norm-1 margin produced by Adaboost for this example?
- (c) Instead of using Adaboost, imagine we combined our classifiers using the following coefficients: $[2, 3, 4, 1, 2, 2, 1, 1] \times \frac{1}{16}$. What is the margin in this case? Does Adaboost maximize the margin?