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Introduction Automatic Speech Recognition (ASR)

Statistical Language Models (SLMs)

Introduction to ASR

To automatically produce the transcription of the input speech.
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Introduction

Automatic Speech Recognition (ASR)
Statistical Language Models (SLMs)

ASR Output Example

ASR output for utterance corresponding to “

N-best list

. haber| er sundu 0.48

. haberl eri sundu 0.24

. haber| er sorduk 0.12

. hangi evi sundu 0.08
. haberl eri sorduk 0.06
. hangi evi sorduk 0.02

Lattice Output

haberler/0.6
haberleri/0.3

o0 wWNPRE

Murat Saraglar Discriminative Language and Acoustic Modeling for LVCSR



Introduction

Automatic Speech Recognition (ASR)
Statistical Language Models (SLMs)

ASR Output Example

ASR output for utterance corresponding to “

N-best list

. haber| er sundu 0.48 (1-best)
. haberl eri sundu 0.24

. haber| er sorduk 0.12

. hangi evi sundu 0.08

. haberl eri sorduk 0.06

. hangi evi sorduk 0.02

Lattice Output

haberler/0.6
haberleri/0.3

o0 wWN R

Murat Saraglar Discriminative Language and Acoustic Modeling for LVCSR



Introduction

Automatic Speech Recognition (ASR)
Statistical Language Models (SLMs)

ASR Output Example

ASR output for utterance corresponding to “

N-best list

. haber| er sundu 0.48

. haberl eri sundu 0.24 (oracle)
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Discriminative Language Modeling (DLM)
Discriminative Training of Acoustic Models

ASR Output Example

Automatic Speech Recognition (ASR)
Statistical Language Models (SLMs)

ASR output for utterance corresponding to “

N-best list
Lattice Output 1. haber| er sundu 0.48
2. haberl eri sundu 0.24

. haber| er sorduk 0.12
. hangi evi sundu 0.08
. haberl eri sorduk 0.06
. hangi evi sorduk 0.02

haberler/0.6
haberleri/0.3

(o200 I~ ¢V)

Multi-pass ASR systems and rescoring/reranking
@ Typically the first pass models are simple and efficient

@ The output of the first pass can be rescored or reranked
with more accurate but more complicated models.
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Introduction Automatic Speech Recognition (ASR)

Statistical Language Models (SLMs)

HOW to Evaluate AS R’> < return to ASR slide

Word Error Rate (WER)

Ratio of total number of errors in an hypothesis string to total number of
words in the reference string

WER(%) = #D +#S + #| « 100

#N
#D: number of deletions
#S: number of substitutions
#1: number of insertions
#N: number of words in the reference

The number of errors in each hypothesis string is calculated with the
minimum edit distance algorithm.
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Statistical Language Models (SLMs)

Introduction to SLMs

Statistical Language Models (SLMs)
SLM assigns a prior probability, P (W), to every word string.

n-gram Language Models

W = {w;...wn} = | saw a nice cat
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Automatic Speech Recognition (ASR)
Statistical Language Models (SLMs)

Introduction to SLMs

Statistical Language Models (SLMs)
SLM assigns a prior probability, P (W), to every word string.

n-gram Language Models

W = {w;...wn} = | saw a nice cat

P(W) = P(lsaw a nice cat)
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Automatic Speech Recognition (ASR)
Statistical Language Models (SLMs)

Introduction to SLMs

Statistical Language Models (SLMs)
SLM assigns a prior probability, P (W), to every word string.

n-gram Language Models

W = {w;...wn} = | saw a nice cat

P(W) = P(lsaw a nice cat)
= P(I)P(saw|l)P(a|l saw)P (nice|l saw a)P(cat|l was a nice)
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Automatic Speech Recognition (ASR)
Statistical Language Models (SLMs)

Introduction to SLMs

Statistical Language Models (SLMs)
SLM assigns a prior probability, P (W), to every word string.

n-gram Language Models
W = {w;...wn} = | saw a nice cat
P(W) = P(lsaw a nice cat)
= P(I)P(saw|l)P(a|l saw)P(nice|l saw a)P( cat || saw a nice)
~ Y——

predicted history
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Automatic Speech Recognition (ASR)
Statistical Language Models (SLMs)

Introduction to SLMs

Statistical Language Models (SLMs)
SLM assigns a prior probability, P (W), to every word string.

n-gram Language Models

W = {w;...wn} = | saw a nice cat

P(W) = P(lsaw a nice cat)
= P(I)P(saw|l)P(a|l saw)P (nice|l saw a)P( cat || saw a nice)
~ ——

predicted history

ifn=2 — (called 2-gram)
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Introduction to SLMs

Statistical Language Models (SLMs)
SLM assigns a prior probability, P (W), to every word string.

n-gram Language Models

W = {w;...wn} = | saw a nice cat

P(W) = P(lsaw a nice cat)
P(1)P(saw|l)P(a|l saw)P (nice|l saw a)P( cat || saw a nice)
~ Y——
predicted history
ifn=2 — (called 2-gram)
P(W) =~ P(I)P(saw|l)P(aJsaw)P (nice|a)P(cat|nice)
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Introduction to SLMs

Statistical Language Models (SLMs)
SLM assigns a prior probability, P (W), to every word string.

n-gram Language Models

W = {w;...wn} = | saw a nice cat

P(W) = P(lsaw a nice cat)
P(1)P(saw|l)P(a|l saw)P(nice|l saw a)P( cat || saw a nice)
~ Y——
predicted history
ifn=2 — (called 2-gram)
P(W) P ()P (saw|l)P (a|saw)P (nice|a)P (cat| nice)
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Q
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Introduction to SLMs

Statistical Language Models (SLMs)
SLM assigns a prior probability, P (W), to every word string.

n-gram Language Models

W = {w;...wn} = | saw a nice cat

P(W) = P(lsaw a nice cat)
P(1)P(saw|l)P(a|l saw)P(nice|l saw a)P( cat || saw a nice)
~ Y——
predicted history
ifn=2 — (called 2-gram)
P(W) P ()P (saw|l)P (a|saw)P (nice|a)P (cat| nice)

history

Q

n-gram parameters =~ V": estimated from text corpus with MLE
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Introduction
Discriminative Language Modeling (DLM)
Discriminative Training of Acoustic Models

Generative LM vs Discriminative LM

Generative LM:;:

@ n-gram probabilities are calculated with MLE.

Discriminative LM:
@ A complementary approach to the generative model.
@ Trained on utterances with their transcripts to optimize the error rate.

@ Advantages:

@ Learning from positive and negative examples (“the of”)
@ Easy to incorporate any feature (morphological, syntactic,
semantic)

@ Disadvantages:

@ Requires both acoustic data and its transcriptions
@ More expensive to estimate
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Generative LM:;:

@ n-gram probabilities are calculated with MLE.

Discriminative LM:
@ A complementary approach to the generative model.
@ Trained on utterances with their transcripts to optimize the error rate.

@ Advantages:

@ Learning from positive and negative examples (“the of”)
@ Easy to incorporate any feature (morphological, syntactic,
semantic)
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@ More expensive to estimate
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Discriminative Language Modeling (DLM)

DLM — Linear Models

Want to learn a mapping from inputs x € X to outputsy € Y,
e.g. utterances to transcription.

@ Training examples (xj,y;) fori=1...N
@ A function GEN which enumerates a set of candidates
GEN(x) for an input x (baseline recognizer)

@ Arepresentation @ mapping each (x,y) € X x Ytoa
feature vector ®(x,y) € RY

@ A parameter vector & € RY
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Discriminative Language Modeling (DLM)

n-grams as DLM Features

n-gram Features

®(x,y) = the number of times an n-gram is seen in'y
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n-grams as DLM Features

n-gram Features

®(x,y) = the number of times an n-gram is seen in'y

Word n-gram Features
y: | anguage nodeling 0.2
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n-grams as DLM Features

n-gram Features

®(x,y) = the number of times an n-gram is seen in'y

Word n-gram Features
y: | anguage nodeling 0.2

®i(x,y) = number of times “| anguage” is seen iny
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n-grams as DLM Features

n-gram Features

®(x,y) = the number of times an n-gram is seen in'y

Word n-gram Features
y: | anguage nodeling 0.2

®i(x,y) = number of times “| anguage” is seeniny
®;(x,y) = number of times “nodel i ng”is seeniny

Murat Saraglar Discriminative Language and Acoustic Modeling for LVCSR



Introduction and Definitions
Estimation Algorithms
Implementation

Advanced DLM

Introduction
Discriminative Language Modeling (DLM)
Discriminative Training of Acoustic Models

n-grams as DLM Features

n-gram Features

®(x,y) = the number of times an n-gram is seen in'y

Word n-gram Features

y: | anguage nodeling 0.2

®i(x,y) = number of times “l anguage” is seeniny
®;(x,y) = number of times “nodel i ng” is seeniny

®(X,y) = number of times “| anguage nodel i ng”is seeniny
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n-grams as DLM Features

n-gram Features
®(x,y) = the number of times an n-gram is seen in'y

Word n-gram Features
y: | anguage nodeling 0.2

®i(x,y) = number of times “| anguage” is seeniny
®;(x,y) = number of times “nodel i ng” is seeniny
®y(X,y) = number of times “l anguage nodel i ng”is seeniny

log0.2
0

>(x,y) =

oRrRFROR---

dx1
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n-grams as DLM Features

n-gram Features
®(x,y) = the number of times an n-gram is seen in'y

Word n-gram Features
y: | anguage nodeling 0.2
®i(x,y) = number of times “| anguage” is seeniny
®;(x,y) = number of times “nodel i ng” is seeniny
®y(X,y) = number of times “l anguage nodel i ng”is seeniny

log 0.2 — Pg(X,y) : log probability of x and y in the N-best list
0
(x,y) = 1
0
1
1
0 dx1
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n-grams as DLM Features

n-gram Features

®(x,y) = the number of times an n-gram is seeniny

Word n-gram Features

y: | anguage nodeling 0.2
®i(x,y) = number of times “| anguage” is seeniny
®j(x,y) = number of times “nodel i ng” is seeniny
®(X,y) = number of times “l anguage nodel i ng”is seeniny

log 0.2 — dg(x,y) : log probability of x and y in the N-best list
0
b(x,y) = 1 — Pi(x,y)
0
1 — ®j(x,y)
1 — P (x,y)
0 dx1
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Discriminative Language Modeling (DLM)

DLM — Definitions

@ d(x,y): Feature vector
@ a: Feature parameters

@ F(x) = argmax ®(X,y)-a@
yEGEN(x)
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Discriminative Language Modeling (DLM)

DLM — Definitions

@ d(x,y): Feature vector —x: Utterance y: Candidate hypothesis
@ &: Feature parameters

@ F(x) = argmax ®(X,y)-a@
yEGEN(x)
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Discriminative Language Modeling (DLM)

DLM — Definitions

@ d(x,y): Feature vector —x: Utterance y: Candidate hypothesis
@ @&: Feature parameters — Discriminative training

@ F(x) = argmax ®(X,y)-a@
yEGEN(x)
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Discriminative Language Modeling (DLM)

DLM — Definitions

@ d(x,y): Feature vector —x: Utterance y: Candidate hypothesis
@ @&: Feature parameters — Discriminative training

@ F(x) = argmax ®(x,y) @ — GEN(x): Hypotheses in N-best list of x
yEGEN(x)
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Discriminative Language Modeling (DLM)

DLM — Definitions

@ d(x,y): Feature vector —x: Utterance y: Candidate hypothesis
@ @&: Feature parameters — Discriminative training

@ F(x) = argmax ®(x,y) @ — GEN(x): Hypotheses in N-best list of x
yEGEN(x)

@ Training: Estimating &

@ Decoding: Searching for y that maximizes ®(x,y) - @
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Discriminative Language Modeling (DLM)

DLM — Definitions

@ d(x,y): Feature vector —x: Utterance y: Candidate hypothesis
@ @&: Feature parameters — Discriminative training

@ F(x) = argmax ®(x,y) @ — GEN(x): Hypotheses in N-best list of x
yEGEN(x)

@ Training: Estimating & — perceptron algorithm

@ Decoding: Searching for y that maximizes ®(x,y) - @
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Discriminative Language Modeling (DLM)

Perceptron Algorithm

Inputs: Training examples (x;,y;) fori =1...N
Initilization: Seta@ =0

Algorithm:
Fort=1...T
Fori=1...N
Calculate z; = argmax (®(x;,z), @)

z€GEN(x;)
If(zi # yi) then & = a + (i, yi) — ®(xi, )
Output: Parameters &
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Averaged Perceptron Algorithm

Discriminative Language Modeling (DLM)

Inputs: Training examples (x;,y;) fori =1...N
Initilization: Seta@ =0

Algorithm:
Fort=1...T
Fori=1...N
Calculate z; = argmax (®(x;,z), @)

zeGEN(x)
If(zi #y;) then & = a + ®(x;,Yi) — P(Xi, Z); Qavg = Qavg + &
Output: Parameters qayg /NT
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Averaged Perceptron Discussion

Discriminative Language Modeling (DLM)

@ Important to control training data
@ Trigrams, lattices better, but not that much
@ Using oracle best-path makes a difference
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Global Conditional Log -linear Models (GCLM)

Intr
Discriminative Language Modelmg
Discriminative Training of Acoustic

Define a conditional distribution over the members of GEN(x)
for a given input x:

1 _
Pa(y[x) = 7(x.3) exp (¢(x,y) - a)
where
Z(x,a)= Y. exp(d(x,y)-a)
y€GEN(x)
Note that

agmax ps(y[x) = argmax ®(x,y) - &
y€GEN(x) y€GEN(x)

so that for testing this is equivalent to linear models.
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Discriminative Language Modeling )
Discriminative Training of Acoustic Models

GCLM Estimation

Objective Function

Choose & to maximize the conditional log-likelihood of the
training data:

N

N
LL(a@) = ) logpa(yilx) = Y [®(x,¥i) - @ —logZ(x;,&)]
i=1 i=1

Use a zero-mean Gaussian prior on the parameters resulting in
the regularized objective function:

N

i=1

The value ¢ is typically estimated using held-out data.

Murat Saraglar Discriminative Language and Acoustic Modeling for LVCSR



Introduction and Definitions
Estimation Algorithms
Implementation

Advanced DLM

Discriminative Language Modeling (DLM)

GCLM Estimation

Optimization

@ The objective function is convex and there is a globally
optimum solution.

@ A general optimization method (e.g. limited memory
variable metric method) can be used to optimize LLg.

@ The optimizer needs the function value and the gradient:

lg & o
8aR = Z bs(Xi,Yi) — Z Pa(y[Xi)®Ps(Xi,y)| — U_Z
S i=1 YEGEN(X;)
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GCLM Discussion

@ For training, the most expensive part is computing the
objective function and its gradient. Fortunately this can be
parallelized.

@ GCLM parameter estimation yields improvement over the
perceptron algorithm.

@ Using the feature set selected by the perceptron algorithm
is more efficient.
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Implementation Using Weighted Finite State
Transducers (WFSTSs)

@ The components of an ASR system can be represented as
WEFSTs

@ These WFSTs can be composed into a single ASR search
network that can be optimized using WFST operations
(HoCoLoG)

@ In particular an n-gram LM can be efficiently represented
as a WEST

@ Same can be done for DLMs
@ Counting can be implemented as WFST composition

@ It is also possible to disciminatively train the weights of the
WEFEST representing the ASR search network
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WEFEST encoding of backoff n-gram

Discriminative Language Modeling (DLM)
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WFST encoding of n-gram linear models

Discriminative Language Modeling (DLM)

Wi / C1+ Cg+ Cg
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Advanced Techniques for DLM

Discriminative Language Modeling (DLM)

© Better feature extraction

@ Better parameter estimation

© Being able to train DLMs using only text data [JHU WS11]
© Being able to train DLMs using only acoustic data
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Discriminative Language Modeling (DLM)

DLM Features

n-gram features
Sub-lexical features
POS features

Syntactic parse features
Topic related features
Duration features
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Other Learning Algorithms for DLM

Discriminative Language Modeling (DLM)

Minimum Classification Error (MCE)
Boosting

Ranking SVM

Loss sensitive perceptron

Perceptron with uneven margins (PCUM)
Minimum Error Rate Training (MERT)
Minimum Sample Risk (MSR)

Weighted GCLM (WGCLM)

Round Robin Duel Discrimination (R2D2)

¢ ¢ 6 ¢ ¢ ¢ ¢ 6 ¢ ¢
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Ideas behind some DLM variants

Discriminative Language Modeling (DLM)

@ Consider all hypotheses (as in GCLM) in the objective
function

@ Introduce a weight (e.g. error rate) for each hypothesis in
the objective function

@ Directly optimize the error rate
@ Maximize the margin explicitly
@ Pairwise discrimination, equivalent to (re)ranking
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WER Sensitive Perceptron Algorithm

Definition: Edit Distance Difference

A(yj, zj) = Edit_Distance(z;) — Edit_Distance(y;)
Inputs: Training examples (x;,y;) fori =1...N
Initilization: Seta =0

Algorithm:
Fort=1...T
Fori=1...N
Calculate z; = argmax (®(x;,z), @)
zeGEN(x)

If (zi # yi) then & = & + A(yi, 2 )(®(Xi, yi) — ®(Xi, z1));
Output: Parameters &
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WER Sensitive Perceptron Loss Function

Discriminative Language Modeling (DLM)

For the perceptron, we have an error when the best hypothesis
is not the oracle.

Perceptron Loss Function

Lsgr = Y i[a- (xi, zi) — a - (i, Yi)]

However, the actual error is the difference between the number
of word errors.

WER Sensitive Perceptron Loss Function

Lwer = > A(Yi, zi)[a - &(x,zi) — a - d(xi, Vi)
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Conclusion

@ Discriminative n-gram modeling yields substantial
improvements over baseline system

Efficient to use, very little real-time cost

Improvements carry over to utterance classification
Improvements are additive to AM adaptation techniques
Has worked in every domain and language investigated
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The Acoustic Model

P(AIW) ZP AISZ (Sla) ) P(a/B)P(BIW)
B

B|W): Pronunciation model
q|B): Context dependency model
S|q): Duration model

A|S): Output model

.
P(A|S) = HP alst) =[] D cN(a i, of)

t=1ieG(st)

o P(
@ P(
o P(
@ P(

@ The parameters 0 = {c;, uj, 02} are estimated to maximize
the likelihood P (A|W).
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Expectation Maximization Algorithm

EM is a technique for MLE for incomplete data problems.
Observed data: {A,W }

Hidden data: {S}

Complete data: {A,W,S}

Starting with initial parameters 0(9) iterate the following
steps:
@ E-Step: Compute the auxiliary function Q

¢ 6 6 ¢ ¢

Q(6;0W) = E {log Po(A, W, S)|A,W; 9<k>}

@ M-Step: Re-estimate parameters 6

o0+ = arg max Q(¢; 6®))
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EM iterations increase the likelihood

@ Log Likelihood : L(#) = logPy(A,W) =log > 5 Po(A,W,S)
® Q(8:0%) = 35 Pyi(S|A, W) log Pg(A, W, S)

@ Claim : if Q(6;0%)) > Q(#™); o)) then L(6) > L(#M))

@ Proof:

L(0) — L(6™) = 1og> Py(A,W,S) — log P, (A, W)
%
S

Po(A,W,S)
= > AW) T2
log —~ Paw(SIA, )Pg(k)(A,w,S)

Pg(A,W, S)
Pe(k)(A7 W7 S)

\Y]

> Py (SIA,W)log
S

= Q(6;0M)) —Q(o™); g(k))
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ML parameter update formulas for Gaussians

ok+1) — arg max Z Paw (S|A,W)log Py(A, W, S)
S

® Py(A[S) = [T, Po(atlst) = IT, NV (a; psi, 98)

® 0= {us, Ug}

@ 5(t) = Pyu (st =S|AW) =3 5. —s Poo (SIA,W)
N >t vs(t)ae

H _=
° Dot Ys(t)
52 Sis(t)a o,

s — Zt (D) Hs
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Computing the Posterior Probabilities ~s(t)

fy (t) — ZSGSZSt:S P@(k)(A,W’ S)
) > ses Pow (AW, S)

@ For HMMs an efficient algorithm exists
(Forward-Backward).

@ Baum-Welch Training: use all possible state sequences S.
Accurate but expensive.

@ Viterbi Training: use the most likely state sequence S;.
Approximate but cheaper.

@ N-Best Training: use the most likely N state sequences Sy .
More accurate than Viterbi but inefficient.

@ Lattice Training: use the most likely state sequences S, .
More efficient than N-Best.
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Forward-Backward

z M
\J\g
c
Viterbi Training N-Best Training
O——0O0—0 O——0O0—0
a b a a b a
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Discriminative Techniques for Parameter Estimation

@ The ultimate goal is to recognize (test) utterances correctly.

@ MLE training tries to maximize the joint likelihood of
acoustics and correct word sequences for the training set.
This might increase the likelihood of other word sequences
as well.

@ Another reasonable alternative is to maximize the correct
recognition rate of the training set. These discriminative
training schemes consider not only the correct word
sequence but also the competing word sequences.

@ There are at least two major difficulties with discriminative
approaches: computation, generalization.
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Objective Functions for Parameter Estimation

@ (Joint) Maximum Likelihood (ML) :
N
6 = arg maxPe(A, W) = arg mgxnz_l log Po(An, Wy) (1)

@ Conditional Maximum Likelihood (CML) :

N
A Po(An, Wh)
© = argmax Pg(W |A) = arg max log———= (2
@ Maximum Mutual Information (MMI) :
N
A P@(Anawn)
© = argmaxlg(A,W) ~argmax » log —————
gmaxle(A, W) ~ argms n; 9 5o (An)P (Wr)
3)

Murat Saraglar Discriminative Language and Acoustic Modeling for LVCSR



Basic Acoustic Modeling
Discriminative Training Criteria
Discriminative Training of Acoustic Models Parameter Estimation

A Unifying Approach for a Class of Discriminative
Training Criteria

[Po(AnW)P (W, )]
f("’ ZW/[PH(AMW')P(w')]a)

T
O
—~~
s
~—
I
(=

n=1

@ For CML/MMI: o =1 and f(x) = Xx.
@ For (an equivalent version of) MCE: « controls the
contribution of competing hypotheses and
-1
f(X) = ———=
=1 + ehx
Also the sum over W’ excludes W,
@ Hopeless utterances are weighted down in MCE.
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Parameter Estimation for CML/MMIE

6 =

arg max log Po(W|A)
Po(AIW)P(W)
2w Pe(AIW)P(W)

= arg mgx log

@ For LVCSR, sum over all word sequences is prohibitively
expensive; instead sum over only the most likely word
sequences using a word lattice.

@ For optimization use:

© Gradient Descent Methods
@ Extended Baum-Welch (EBW) Algorithm
(Gopalakrishnan et al, 1989; Normandin 1991)
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The Extended Baum-Welch Algorithm (EBW)

. s Po(AIS)P(S|W)P(W)
© = arg mgxlog S wrew s Po(AIS)P(S/W/)P (W)

@ %5(t) = Py (st = s|A)
@ Auxiliary function Qp (6; ) (similar to Q)

Qo(0:0M) = Y “[rs(t) — 25(t)]log Po(ar|st)

+> DS/daPe(k)(a|s) log Py(als)
S

@ Convergence requires large enough {Ds}.

Murat Saraglar Discriminative Language and Acoustic Modeling for LVCSR



Basic Acoustic Modeling
Discriminative Training Criteria
Discriminative Training of Acoustic Models Parameter Estimation

CML parameter update formulae for Gaussians

ok+1) — arg max Qp (0 o))

o 9:{,“570-5}and P@(at‘st) N(at;ﬂstaagt)

2sis=s (SAW)
® 1(t) = ijst/P e(é TAW)

Dsisi=s 2w’ ews Po) (SAW)
/
o 7 (t) Zs’tzw”ew/ 9 (S/ AW”)
fis = >t [rs(t) — Ys(t)]ar + Dspus
Zt[’Ys(t) —75(t)] + Ds

52 — >is(t) = vé(t)]af + Ds(u5 + od) _ 42
° >t[rs(t) — (1)) + Ds s
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Tricks of the Trade

@ During recognition a trigram LM
[P(W) = [T P(wi|wi_1w;_»)] is used, however using a
unigram LM [P(W) = []; P(w;)] during training gives better
results.

@ During recognition a scale factor A is used.

W = arg max P (AJW)P (W) = arg mﬁxP(A\W)%P(W)

During training the acoustic model should be scaled down
with the same factor.

P(A,W) = P(AJW)xP(W)

@ D are chosen to guarantee positive variances.
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Summary for MMIE/CMLE of the Acoustic Model

© Generate word lattices representing the alternate
hypotheses using existing acoustic and language models.

@ Generate state level segmentation of the truth and the
alternate hypotheses based on the word lattices.
In other words, compute Py(S,A,W).

© Compute the posterior probabilities (ys(t) and v4(t)).
@ Accumulate sufficient statistics (ys(t), vs(t)at, ys(t)a?).
@ Determine {Ds}.

© Update model parameters ©.

@ If not done iterating go to Step 2 (or 1).
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