Mehryar Mohri

Speech Recognition

Courant Institute of Mathematical Sciences
Homework assignment 3 (Solution)

Part 2, 3 written by David Alvarez

1. For this question, it is recommended that you use the GRM library
and FSM or OpenkFst libraries. In fact, try as much as possible to use
the utilities of these libraries to answer the questions. However, you
need to justify your responses and not just mention the library utilities
used.

(a) Download the following training corpus S and test corpus S:
http://www.cs.nyu.edu/ "mohri/asr10/train.txt
http://www.cs.nyu.edu/ "mohri/asr10/test.txt.

(b) Extract the vocabulary ¥; of S and define a start and end symbol.
(c) Create the following language models:

e bigram back-off model;
e trigram back-off model;

These can be created as indicated in the lecture slides using the utilities
grmmake and grmconvert.

Report for each of the weighted automata obtained

e the number of states;
e the number of transitions;
e the number of e-transitions;

e the number of n-grams found (n = 2 for bigram models,
n = 3 for trigram models).

For these questions, you can use the utility fsminfo of the FSM
library. You should however explain how you determine the num-
ber of n-grams.

The number of states, transitions, and e-transitions are obtained di-
rectly using fsminfo. For the bigram models, by construction, the
number of unigrams is the number of states minus one (back-off state),
minus the initial and final state if one wishes to exclude the start and
end symbols. By construction, the number of bigrams is the number
of non-e-transitions minus the number of non-e-transitions leaving the
back-off state since each non-e-transition labeled with b leaving a non-
backoff state a precisely corresponds to the occurrence of bigram ab.



Now, there is exactly one non-e-transition from the back-off state to all
states except to the back-off state itself and the initial state. Thus,

N (bigrams) = N(transitions) — N(e—transitions) — N (states) + 2.
This can be also re-written as
N (bigrams) = N (transitions) — 2N (states) + 4.

The number of trigrams can be obtained in a similar fashion from the
trigram language model as

N (trigrams) = N (transitions) — 2N (states) + 4 — N (bigrams).

If you constructed the bigram model with:

$ grmcount -n 2 -s 1 -f 2 train.far \
| grmmake > train.2.lm.fsm

you should have:

# of states 44692
# of arcs 487160
# of eps 44690
# of bigrams 397780

Similarly for the trigram model constructed with:

$ grmcount -n 3 -s 1 -f 2 train.far \
| grmmake > train.3.lm.fsm

you should have:

# of states 435987
# of arcs 1707629
# of eps 435985
# of trigrams 437879

Randomly generate 100 sequences from the first model and com-
pare the likelihood given by the two models to the sample formed
by these sentences.

It is not hard to generate random sentences from a model using fsmrandgen.

While this may be subjective and depend on the sentences you have gen-
erated, in general the trigram models should be closer to the sentences
that served for training and thus could appear closer to English than
the bigram models.



(e) Compute the perplexity of these models using the test corpus.

If the n-gram language model is represented as a weighted automaton
A over the log semiring, then, by definition, the negative log of the
probability of the text is obtained by computing the ®joz-sum of the
weights of all paths of A o B, where B is a deterministic automaton
representing the text. Thus composition followed by the application of
a shortest-distance algorithm (over the log semiring) yields the result.
This can be used to compute the perplexity of the model. The shortest-
distance can be obtained using the utilities fsmpush or fsmpotentials.
The automaton B can be a long linear chain. Instead, one can use a
transducer B’ union of the sentences mapping each sentence to each
rank in the text. Ao B’ followed by determinization gives the negative
log probability of each sentence.

The models created in (c) are defined over the tropical semiring, not
the log semiring. Also, the negative log probability of each sentence
is computed separately due to the presence of start and end symbols.
A standard shortest-distance (over the tropical semiring) can be used
to compute the negative log probability of each sentence from A o Xg,
where X, is an automaton representing sentence s. The sum over all
sentences s can be used to compute the perplexity.

A (not very fast) way of computing the perplexity on the test set is:

cat test.far | \
farfilter "fsmcompose lm.fsm - |
fsmrmepsilon |
fsmdeterminize |
fsmpush -c -f" | \
farprintstrings -c -i labels \
awk ’{ tot_words += NF - 2;
h += $NF / log(2.0) %
END { print 2.0 ~ (h / tot_words) }’

For the bigram model the perplexity should be around 173, for the
trigram it should be around 102.

(f) Shrink both of these models with the option —s4. What are the
perplexity estimates for these models.

The models can shrunken using grmshrink. The perplexities can be
computed as in the previous question. They are expected to be higher,
around 223 for the bigram model, and 175 for the trigram model.

2. Class-based model



(a) First, for information purposes, we obtain the ten most frequent
bigrams, for which we can use the srilm library to output the bigrams
and their counts, and then sort them with the following command

ngram—count —text ../train.txt —order 2 —write—order
2 —write BigramCounts.txt | sort —k2 —t $'\t' —-n
BigramCounts.txt

This gives us the following most frequent bigrams and their counts (in
descending order)

cts Vs 2675
for the 2676
mln vs 3206
said the 3579
said it 4062
mln dlrs 4497
in the 6175
of the 6779
said </s> 7782
<s> the 10893

Note that the Mutual Information can be approximated as

N * c(wiws)

I(wy,wsy) =~ log, c(won) P(ws)

where N = |V is the corpus size. Using this formula, we can obtain
the 20 elements with the highest PMI with the following simple python
implementation, which uses the unigram and bigram counts obtained
with the SRILM library.

BiCounter=Counter ()
UniCounter = Counter ()
MutualInfo=Counter ()
with open ('BigramCounts.txt','r") as f:
reader=csv.reader (f,delimiter="\t")
for row in reader:
bigram = row[0]
BiCounter [bigram]=float (row([1])
with open('UnigramCounts.txt','r') as f:
reader=csv.reader(f,delimiteIZ'\t')
for row in reader:
UniCounter[row[0]]=float (row[1l])




totalBigrams = sum(BiCounter.values())

totalUnigrams = sum(UniCounter.values())
for bigram in list (BiCounter) :
unigrams = bigram.split ()
if BiCounter[bigram] > O0:
if ...
(UniCounter [unigrams[0]]*UniCounter [unigrams[1]])>0:

MutualInfo[bigram]= ...
math.log((totalUnigrams+BiCounter [bigram])/ ..

\(UniCounter[unigrams[O]]*UniCounter[unigrams[_
else:
MutualInfo[bigram] = float ('inf')
MostCommon = MutualInfo.most_common (20)

The results are shown in Table (1).

Table 1: Mutual Information

wi1w9 I(uq,u&)
blankets soap 20.4852013649
rwevs 61805000 20.4852013649
harlan ullman 20.4852013649
parra gil 20.4852013649
andrzej doroscz 20.4852013649
mochtar kusumaatmadja 20.4852013649
heron cay 20.4852013649

unexplored moere 20.4852013649
fiberglass architecural ~ 20.4852013649
brewers castlemaine 20.4852013649

rm nicel 20.4852013649
beau bolter 20.4852013649
robbie mupawose 20.4852013649
43124 42476 20.4852013649
hissene habre 20.4852013649
606352 659271 20.4852013649
zheng tuobin 20.4852013649
11895 228999 20.4852013649

ramar intercapital 20.4852013649
culpable homicide 20.4852013649

It is no surprise that all of these bigrams have the same MI, since for a



pair of words that only appear once each and they appear as a bigram,
then

lj@uluq)
I ~logy ———————
(wlan) 082 P(wl)P(wg)
It is clear what the mutual information is measuring. Bigrams that
frequently appear together have high values of MI, and thus could be
considered as a block phrase in the language model.

= log|V|~! = 20.4852

(b) Note that it doesn’t make much sense to define classes for pairs
of numbers (of which the corpus has many examples), since they nat-
urally appear only once due to their individual low probability of oc-
curring and thus manage to get high values of Mutual Information.
Filtering these cases, we now pick the 2000 bigrams with highest MI
in python, and then write a text file dictionary with them.

With python, we can very easily create the classes and write the text
files in the format required to define a transducer for the fsm library.
We use

MostCommon2000 = MutualInfoNoNum.most_common (2000)
nonMappedUnigrams = set (UniCounter)
Dict=dict ([jj[0],33[1]] for jj in MostCommon2000)
f= open("classes.txt","w")
f2 = open("ClassesCorpus.txt","w")
label = 44693 #Starting label of symbols file
for key in Dict.keys():

unigrams=key.split ()

klass = unigrams[0]+"_"+unigrams([1]

f.write("0 0 "+unigrams[O0]+" "+klass+"\n")

f.write ("0 0 "+unigrams[1]+" "+klass+"\n")
f2.write(klass+" "+str(label)+"\n")
label+=1
nonMappedUnigrams= nonMappedUnigrams — ...
set (unigrams[0]) — set (unigrams[1])
f.close ()
f2.close ()

f=open("classes.txt","a")
for unigram in nonMappedUnigrams:

f.write("0 0 "+unigram+" "+unigram+"\n")
f.write("1")
f.close()

Then, using these files, we can create the transducer that maps into
the classes with




fsmcompile —iClassesCorpus.syms —oClassesCorpus.syms ...
—t<classes.txt> ClassMapper.fsm

and then, to create the LM, we first read the training sentences, com-
pose them with the Class Mapper transudcer and project them into the
output labels. Thus, we have now a far file with the edited sentences.

farcompilestrings —iClassesCorpus.syms train.txt> Corpus.far
farfilter "fsmcompose ClassMapper.fsm — | fsmproject ...
—2"<Corpus.far > MappedCorpus.far

Finally, we can build the language model with the classes as follows

grmcount —n2 —sl —f2 MappedCorpus.far | grmmake > ...
BiModelClasses.fsm

The construction of the class-bases trigram model is analogous.

(c) Finally, we evaluate the class-based model by computing its per-
plexity. In order to do this, we need to preprocess the test sentences,
by composing them with the ClassMapper as before. Then, we com-
pute the perplexity just as we did in part 5. The results for these
class-based models are:

Table 2: Performance for Class-Based Models
Model | Perplexity (w < /s >) Perplexity (w/o < /s >)
Bigram 156.432 218.456
Trigram 95.329 118.718

As we can see, grouping bigrams with large mutual information into
classes helped to significantly improve the perplexity in all cases.

. Maxent Models

After an intricate and complicated installation of the packages 1iblbfgs,
srilm, and its extension for maxent models, we train a Maxent model
with bigram features with the following code

ngram—count —text ../train.txt —maxent—lm ...
MaxEntBigram —order 2




The output is the following

Iteration 99

No of NaNs in logZs: 0, No infs: 0

dual is 4.75908

regularized dual is 4.96105

norm of gradient =0.00805258

norm of regularized gradient =0.00804419

No of NaNs in logZs: 0, No infs: O

dual is 4.75903

regularized dual is 4.96081

norm of gradient =0.00368955

norm of regularized gradient =0.00367062
Iteration 100
OWL—BFGS terminated with the stopping criterion
Duration: 11 seconds

From here we can see that the LGFBS optimization method has met
a maximum iteration (100) criterion.

Similarily, we build the maxent model for trigram features.

ngram—count —text ../train.txt —maxent—Ilm
MaxEntTrigram —order 3

The process, which takes significantly more time to run, now actually
reaches convergence, although close to the 100 iteration limit.

Iteration 97
No of NaNs in logZs: 0, No infs: 0
dual is 3.27721
regularized dual is 3.70278
norm of gradient =0.000727621
norm of regularized gradient =0.000451379
Iteration 98
OWL—BFGS resulted in convergence
Duration: 68 seconds

Now, we compute perplexities on the same test set as for part A. The
code to implement this is

ngram —maxent —lm MaxEntBigram —ppl ../test.txt
—debug 2




ngram —maxent —Im MaxEntTrigram —ppl ../test.txt ...
—debug 3

The result for the bigram model is the following

15000 sentences, 335409 words, 5257 OOVs
0 zeroprobs, logprob= —786593 ppl= 190.097 ppll= 241.278

As we did in the previous section, ngram reports the perplexity in the
sentences with stopping signs (ppl) and without them (ppll). On the
other hand, for the trigram model we have

15000 sentences, 335409 words, 5257 0OOVs
0 zeroprobs, logprob= —717485 ppl= 119.881 ppll= 149.004

For completion, we now try another possible model that the maxent
patch allows to create. This time, we create an interpolated mixture
of the maxent bigram and trigram models.

ngram —maxent —lm MaxEntTrigram —mix-maxent —mix—lm ...
MaxEntBigram —ppl ../test.txt —bayes 0

The results, however, show that this mixture model does not perform
as well as the pure trigram model

15000 sentences, 335409 words, 5257 0OOVs
0 zeroprobs, logprob= —720797 ppl= 122.559 ppll= 152.485

Comparing to the results obtained in the first part, we see that the per-
plexities for both methods are very similar, with a slight but constant
advantage for the ngram back-off models. In terms of efficiency, it
seems like computing perplexities for the maxent model is faster than
for the usual ngrams, but not faster than for the pruned ngram mod-
els. It must be noted also that the method LEFBGS is known converge
very fast, so the core of the maxent is already close to top-of-the-art
in terms of efficiency.




