Mehryar Mohri

Speech Recognition

Courant Institute of Mathematical Sciences
Homework assignment 2

October 09, 2012

Due: October 22, 2012

A. Pronunciation dictionaries

The following is a sample of a pronunciation dictionary. The phonemic
transcription as well as the probability of the transcription is given for each
word.

1. cray — K rey (P =.9)

2. dance — D ae n s (P = .85)
3. data — D ae T ax (P = .5)
4. data — D ey T ax (P = .5)
5. date — D ey T (P = .85)

6. day — D ey (P =.9)

Construct a weighted transducer that represents the corresponding weighted
transduction (use negative log of probabilities to assign weights to the paths,
words such as ’cray’ for the input alphabet, and phones such as 'K’ or ’ae’
for the output alphabet). Take the inverse of that transducer and make it
as compact as you can.

Solution: Figure 1 shows the pronoounciation transducer. The inverse of that
transducer can be made compact by first determinizing it, then encoding each pair of
input-output labels as a single symbol, and then applying weighted determinzation
and minimization, and finally decoding:

fsminvert pron.fsm | fsmdeterminize | fsmencode -1 - key.fsm
| fsmdeterminize | fsmminimize
| fsmencode -1d - key.fsm >ipron.fsm

Figure 2 shows the result.

K/0.105 0 <psitl) 6 et
cray:K/0.
eps:s/0 @

dance:D/0.162 6 eps:ae/0 ° eps:n/0 e

data:D/0.693 ° eps:ae/0 ° eps:T/0 G eps:ax/0
° data:D/0.693

eps:ey/0 eps:T/0
date:D/0.162 eps:ax/0 ‘.@
day:D/0.105 e eps:ey/0 ° eps:T/0
° eps:ey/0

Figure 1: Pronounciation transducer.

B. Weighted Grammars

Here is a set of sentences with their corresponding probability of occurrence:

He comes (very)* late, in the afternoon (P = .2)
He comes (very)* late, in the evening (P= .3)

He will come (very)* late, in the afternoon (P = .1)
He will come (very)* late, in the evening (P = .4)

Construct a compact weighted automaton that accepts exactly these
sentences (use negative log of probabilities to assign weights to the paths,
use words such as ’'he’ to label transitions).

Solution: The solution can be obtained using weighted determinization and mini-
mization.

C. Text Operations

1. Elementary automata. Create an automaton for each of the following
questions, given the alphabet ¥ = {a,b,...,2, A, B,..., Z, (space)}:

n:dance/0

Figure 2: Compact inverse pronounciation transducer.

(a) accepts a letter in ¥ (excluding space),
(b) accepts a single space,

(c) accepts a capitalized word (where a word is a string of letters in
3. excluding space, and a capitalized word has its initial letter
uppercase and remaining letters lowercase),

(d) accepts a word containing the letter a.

2. Complex automata. Using the elementary automata of the previous
exercise as the building blocks, use appropriate library operations on
them to create an automaton that:

accepts zero or more capitalized words each followed by a space,
accepts a word beginning or ending in a capitalized letter,

)
)

(c) accepts a word that is capitalized and contains the letter a,
) accepts a word that is capitalized or does not contain an a,
)

accepts a word that is capitalized or does not contains an a (this
should be done without using the union operation of the library).

3. Optimizations. Epsilon-remove, determinize, and minimize each of the
automata constructed in the previous question. Give the number of
states and arcs before and after these operations.

Solution: The solution to the questions of this problem are straightforward appli-

cations of the software library.

D. Trim automata

Consider the automaton:

0

=k W= O

_— N =

o

[NI

W =~

1. How many states can be reached from the initial state?

Solution: Figure 3(a) shows a graphical representation of this automaton.

Using fsminfo and the given textual representation trim.txt, we can deter-
mine both the number of accessible and coaccessible states:

$ fsmcompile trim.txt | fsminfo -n

class

semiring
transducer

of states

of arcs
initial state

H B H H HH

of
of
of
of
of

final states

eps

accessible states
coaccessible states
connected states

basic
tropical

n
5
5
0
2
0
3
4

2

strongly conn components 4

There are 3 accessible states: 0, 1, and 2.

2. How many states can reach a final state?

Solution: There are 4 coaccessible states (every state except from 1).

3. Compile this automaton and then remove all useless states.

Solution: This can be done using fsmconnect:

()
O

2

®
(a) (b)

Figure 3:

$ fsmcompile trim.txt | fsmconnect > trim.fsm

Figure 3(b) shows a graphical representation of the automaton after connec-
tion.

E. Codes
Given the alphabet ¥ = {a,b, ..., z, (space)},

1. create a transducer that implements the rot18 cipher —a — n,b —
0,....,,m — z,n —a,0—b,..., 2 —>m,

Solution: Figure 4 shows that transducer.
2. encode the message "my secret message" (assume (space) — (space)),
Solution: The message can be encoded using composition as follows:

$ echo "m y <space> s e cr et <space>me s s age"\
| farcompilestrings -i rotl3_syms.txt | fsmcompose - rotl3.fsm \
| fsmproject -2 | fsmprint -i rotl3_syms.txt \
| gawk ’{ printf $3}END{printf "\n"}’ \
| sed -e ’s/\<space\>/ /g’
zl frperg zrffntr

3. decode the encoded message from above.

Since the inverse of the transducer is itself, the transducer itself can
be used for decoding;:

<space>:<space>

Figure 4:

$ echo "z 1 <space> f rper g<space>zr ffntzr")\
| farcompilestrings -i rotl3_syms.txt | fsmcompose - rotl3.fsm \
| fsmproject -2 | fsmprint -i rotl3_syms.txt \
| gawk ’{ printf $3}END{printf "\n"}’ \
| sed -e ’s/\<space\>/ /g’
my secret message

F. Numbers
Given the alphabet ¥ = {0,1,...,9},
1. create an automaton that accepts numbers in the range 0 — 999999.

Solution: See automaton of Figure 5.

2. create a transducer that maps numbers (in the range 0 — 999999)
represented as strings of digits to their English read form, e.g.,

Figure 5:

1 — one

11 — eleven

111 — one hundred eleven

1111 — one thousand one hundred eleven
11111 — eleven thousand one hundred eleven

Solution: The transducer T can be constructed using rational operations.
Start with a digit transducer D mapping single-digit numbers to their English
expressions. Similarly, construct a transducer 77 mapping numbers 11 — 19
to their English expressions and 75 mapping 10, 20,...,90 to their English

form, etc.

3. Randomly generate several numbers both as strings of digits and in
their read form.

Solution: Use fsmrandgen.

G. Spelling

Given the alphabet {a,b, ...,z (space)}, create a spelling corrector trans-
ducer that implements the (imperfect) traditional rule — ‘i before e except
after ¢’. Use it to correct the inputs ‘yeild’ and ‘reciept’.

Solution: To simplify the presentation, we can consider the alphabet A = {c, e, i, Z}.
Z can be replaced with all the elements of the English alphabet and (space) except
from ¢, e, and i.

Note that the set of forbidden sequences can be described by the regular expres-
sion F' = A*(cie)A* + A*(A —{c})(ei)A* + (ei) A*. Using fsmdifference, we can

Figure 6: (a) Automaton of admissible sequences. (b) Spelling correction
transducer.

compute the minimal deterministic automaton representing the set of admissible
sequences A* — F':

$ fsmdifference Deltastar.fsm forbidden.fsm | \
| fsmrmepsilon | fsmdeterminize | fsmminimize > admissible.fsm

The result is shown in Figure 6(a) . That automaton can be augmented to define an
identity transducer restricted to that domain by augmenting it with output labels
identical to the input ones. To allow the forbidden sequence, it then suffices to
add a distinct path from state 1 mapping ie to ei. Figure 6(b) illustrates that
construction.

A general method for constructing such transducers consists of compiling context-
dependent rules into transducers.

H. Roman numerals
Given the alphabet {I,V, X,L,C,D, M},

1. create a weighted automaton that assigns to Roman numerals their
numeric value (hint: use fsmbestpath).

Figure 7: Weighted automaton computing the value of Roman numerals in
the tropical semiring.

Solution: Observe that since the value of IV is less than that of I plus V and
similarly with IX, XL, XC, CD, and CM. In view of this observation, the
weighted automaton of Figure 7 defined in the tropical semiring is a solution.
Its binary representation roman.fsm can be used as follows to compute the
value of a Roman numeral if romansyms.txt is a textual symbols file for the
Roman alphabet:

$ echo "M CM XL I V" | farcompilestrings -i romansyms.txt \
| fsmcompose - roman.fsm | fsmbestpath | fsmpush -ic \
| fsmprint | gawk ’NF<=2 {print $2}°’

1944

2. e-remove, determinize, and minimize this automaton. Draw the au-
tomaton before and after these operations.

Solution: The automaton admits no e-transition. Using determinization and
minimization:

$ fsmcompile -i romansyms.txt roman.txt \
| fsmdeterminize | fsmminimize >roman_min.fsm

M/1000

L/30

X/10

10

X/10
1/1 @ C/80
C782
X/10

/1 X/10 / I @
C/100 Y
U1 ' X/10/ ¢/100 |
C/100

<)

D/320

\\} s j

M/820

Figure 8: Deterministic and minimal weighted automaton computing the
value of Roman numerals in the tropical semiring.

leads to the weighted automaton of Figure 8.

I. Genome
Given the alphabet L = {A,G,T,C},

1. create a transducer 7" that implements the following edit distance:
d(z,z) =0,z € L
d(z,e) =d(e,y) =1,z € L .
d(z,y) =15,z #y €L

Solution: Create the following textual symbols file "lab’:

e 0

10

Figure 9: Edit-distance transducer defined in the tropical semiring.

Q- Q>
D W e

Use that to create a textual representation ’tedit.txt’ of the edit-distance
transducer shown in Figure 9. Compile that to creat its binary representation:

$ fsmcompile -ilab -olab -t tedit.txt > tedit.fsm

. using T, find the best alignment between the strings ‘AGTCC’ and
‘GGTACC’

Solution: Create two automata representing each ‘AGTCC’ and ‘GGTACC”:

$ echo "A G T C C" | farcompilestrings -ilab > agtcc.fsm
$ echo "G G T A C C" | farcompilestrings -ilab > ggtacc.fsm

11

Figure 10: Transducer showing the best alignment of ‘AGTCC’ and
‘GGTACC’, whose cost is 2.5.

G:G/O;/D TT0 o) Al ° C:Clo ° C:Cl0
Giell _@ G;G/O_() T:T/0 . A:e/l,@ c:co () c:clo

Figure 11: Transducer showing the two best alignments of ‘AGTCC’ and
‘GGTACC’, whose costs are 2.5 and 3.

Use composition and fsmbestpath to determine the best alignment:

$ fsmcompose ggtacc.fsm tedit.fsm agtcc.fsm \
| fsmbestpath > best.fsm

3. find the second best alignment

Solution: Similarly, use composition and fsmbestpath to determine the best
alignment:

$ fsmcompose ggtacc.fsm tedit.fsm agtcc.fsm \
| fsmbestpath -n2 > best2.fsm

12

