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Speech Recognition Components

Acoustic and pronunciation model:

•             : observation seq.     distribution seq.

•             : distribution seq.     CD phone seq.

•             : CD phone seq.      phoneme seq.

•             : phoneme seq.     word seq.

Language model:          , distribution over word 
seq.
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Context-Dependent Phones

Idea: 

• phoneme pronunciation depends on 
environment (allophones, co-articulation).

• model phone in context     better accuracy.

Context-dependent rules:

• Context-dependent units:

• Allophonic rules:

• Complex contexts: regular expressions.
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ae/b d → aeb,d.

→

t/V ′ V → dx.

(Lee, 1990; Young et al., 1994)
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Acoustic Models

Critical component of a speech recognition 
system.

Different types:

• context-independent (CI) phones vs. context-
dependent (CD) phones.

• speaker-independent vs. speaker-dependent.

Complex design and training techniques in large-
vocabulary speech recognition.
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Acoustic models

Training algorithms

This Lecture
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Continuous Speech Models

Graph topology: 3-state HMM model: for each CD 
phone       .

• Interpretation: beginning, middle, and end of CD 
phone.

Continuous case: transition weights based on 
distributions over feature vectors in     , typically 
with 
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Distributions

Simple cases: e.g., single speaker, single Gaussian 
distribution

• covariance matrix   typically diagonal.

General case: mixtures of Gaussians.
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GMMs - Illustration
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GMMs - Illustration
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Parameter Reduction

Problem: too many parameters (> 200M).

• large number of GMMs provides better 
modeling flexibility.

• but requires much more training data.

Solution: tying mixtures, i.e., equality constraints on 
distributions.

• within the same HMM or distributions in 
different HMMs (similar CD phone transitions). 

• semi-continuous: same distrib. different mixtures.
10
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Silence Model

Motivation: accounting for pause between words 
and sentences.

Model:

• optional pause symbol between words and at 
the beginning and end of utterances in language 
model.

• specific silence acoustic model, which can be 
context-dependent or not.
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Composite HMM model

Composite model: obtained by taking the union 
and closure of all CD phone models.

Illustration:
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Acoustic models

Training algorithms

This Lecture
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Parameter Estimation

Data: sample of    sequences of the form:

Parameters:

• mean and variance of Gaussians        .

• mixture coefficients    .

Problems: 

• segmentation.

• model initialization.
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Estimation Algorithm

Baum-Welsh algorithm:

• maximum likelihood principle.

• generalizes to continuous case with Gaussians 
and GMMs.

Questions: segmentation, model initialization.
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Univariate Gaussian - ML solution

Problem: find most likely Gaussian distribution, 
given sequence of real-valued observations

Normal distribution:

Likelihood:

Solution:    is differentiable and concave;

3.18, 2.35, .95, 1.175, . . .
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Gradients

General identities:

• log of determinant

• bilinear form
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∇σ(log det(σ)) = (σ−1)� = σ−�.

∇σ(x�σx) = xx�.
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Multivariate Gaussian - ML solution

Log likelihood: sample               .

ML solution:
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GMMs - EM Algorithm

Mixture of    Gaussians:

EM algorithm: let 

• E-step:

• M-step:
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GMMs - EM Algorithm

Proof: M-step. 

• Auxiliary function:

• Optimization for fixed   and                  :
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HMMs - EM Algorithm

Use EM algorithm in discrete case to determine 
the probability of each transition    at time   :       .

Use GMMs update combined with the probability 
for each observation to be emitted from each 
transition   .

21

e t w[e]

e



Mehryar Mohri - Speech Recognition Courant Institute, NYUpage

Initialization

Selection of model:

• HMM topology (states and transitions).

• number of mixtures (   ).

Flat start: all distributions with same average 
values (mean and variance) computed over entire 
training set.

Existing hand-labeled segmentation: partial 
segmentation basis.

Uniform segmentation: equal number of HMM 
transitions per training example.
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Forced Alignment

Viterbi training: approximate but faster method to 
determine HMM path.

Segmental K-means: approximate but faster 
method to determine which Gaussian of a mixture 
the training instance has been sampled from.
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Viterbi Alignment

Idea: faster alignment based on most likely path.

• use current acoustic model.

• align sequence of feature vectors with most 
likely path (best path algorithm, e.g., Viterbi).

24

o

e e11e11e11e12e22e22e23e33e34e44

1 2 3 4 5 6 7 8 9 10



Mehryar Mohri - Speech Recognition Courant Institute, NYUpage

Segmental K-Means

Idea: use clustering algorithm to determine which 
Gaussian generated each observation.

Solution: use K-means clustering algorithm to 
initialize distribution means.

• Initialization: select K centroids               .

• Repeat until no centroid change:

• for each point    find closest centroid    and 
assign    to cluster  .

• for each cluster  , redefine    as the centre of 
mass.
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Notes

Convergence rate of K-means: subject of current 
research.

GMM EM algorithm: soft version of K-means.
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Variable Number of Mixtures

Problems:

• number of mixtures required.

• possible over- or underfitting.
Solution:

• originally single Gaussian distribution.

• create two-component mixture with slightly 
perturbed means         with the same 
covariance matrix.

• model parameters reestimated until desired 
complexity reached.

27
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Acoustic Modeling

In practice: 

• complicated recipes or heuristics with large 
number of ad hoc techniques.

• key skilled human supervision: choice of initial 
parameters to avoid local minima, segmentation, 
choice and number of parameters.

• computationally very costly: may take many days 
of several processors in large-vocabulary speech 
recognition.
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Improvements

Adaptation (VTLN, MLLR).

Ensemble methods (ROVER).

Better features (e.g., LDA, MMI).

Discriminative training.
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