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Speech Recognition Components

B Acoustic and pronunciation model:
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d): observation seq. < distribution seq.

c): distribution seq. < CD phone seq.
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CD phone seq. — phoneme seq.

o Pr(p | w). phoneme seq. «— word seq.

® |anguage model: Pr(w), distribution over word

seq.
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Context-Dependent Phones

(Lee, 1990;Young et al., 1994)
A |dea:

® phoneme pronunciation depends on
environment (allophones, co-articulation).

® model phone in context — better accuracy.
B Context-dependent rules:
e Context-dependent units:ae/b___d — aep 4.
e Allophonic rules:t/V'_V — dx.
® Complex contexts: regular expressions.
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Acoustic Models

| Critical component of a speech recognition
system.

| Different types:

e context-independent (Cl) phones vs. context-
dependent (CD) phones.

® speaker-independent vs. speaker-dependent.

B Complex design and training techniques in large-
vocabulary speech recognition.
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This Lecture

B Acoustic models

B Training algorithms
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Continuous Speech Models
(Rabiner and Juang, 1993)

B Graph topology: 3-state HMM model: for each CD
phoneaey, 4.
dO:e dl:e d2:e

6 dO:e 6 dl:e d2:aebd @

® |nterpretation: beginning, middle, and end of CD
phone.

® Continuous case: transition weights based on
distributions over feature vectors in RY, typically
with N = 39.

Mehryar Mohri - Speech Recognition page 6 Courant Institute, NYU



Distributions

® Simple cases: e.g., single speaker, single Gaussian
distribution

1 1 _
Nwinso) = G exp( (e = To o - ).
® covariance matrix o typically diagonal.

B General case: mixtures of Gaussians.
M
Z )\kN(ma HE O-k‘)a
k=1

M
with \; > 0 and Z A\; = 1. Typically, M = 16.
i=1
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GMMs - lllustration
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GMMs - lllustration
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Parameter Reduction

® Problem: too many parameters (> 200M).

® |arge number of GMMs provides better
modeling flexibility.

® but requires much more training data.

B Solution: tying mixtures, i.e., equality constraints on
distributions.

® within the same HMM or distributions in
different HMMs (similar CD phone transitions).

® semi-continuous: same distrib. different mixtures.
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Silence Model

B Motivation: accounting for pause between words
and sentences.

B Model:

® optional pause symbol between words and at
the beginning and end of utterances in language
model.

® specific silence acoustic model, which can be
context-dependent or not.
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Composite HMM model

B Composite model: obtained by taking the union
and closure of all CD phone models.

Tying can reduce
the size.
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This Lecture

B Acoustic models

B Training algorithms
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Parameter Estimation

® Data: sample of msequences of the form:

Feature vectors: 01,09, ...,07 € RY

CD phones: P1,D25---,P1 ~ QA€c t.
B Parameters:

® mean and variance of Gaussians u;, ;.
® mixture coefficients ).

B Problems:
® segmentation.

® model initialization.
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Estimation Algorithm

B Baum-Welsh algorithm:
® maximum likelihood principle.

® generalizes to continuous case with Gaussians
and GMMs.

® Questions: segmentation, model initialization.
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Univariate Gaussian - ML solution

® Problem: find most likely Gaussian distribution,
given sequence of real-valued observations

3.18,2.35,.95,1.175, . ..

® Normal distribution: p(z) = L GG _“)2>
lp V2mo? WI: ( 20)22 |
- . T; — [
& |ikelihood: I(p) = —§mlog(27ra2) E o

®m Solution: [ is differentiable and concave;

ap(x)zo(:w:ii% op(x) o o Zi’f B

i—1 do*
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Gradients

B General identities:

® |og of determinant

® bilinear form
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Multivariate Gaussian - ML solution

| | og likelihood: sample x4, . .., z,.
1 1 T _—1
For each x;, Pr[x;] = )N 2|12 exp(—§(xi — ) o (x; — ,u))
L= f:logPr[a:-] = f: N log(2m) + 1log o7 — 1(ac —u) o N — p)
1 2 2 2 1 1 :

1=1 1=1

A ML solution:
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GMMs - EM Algorithm

B Mixture of M Gaussians:
M m M
pole] = AN (@ pig, o%) L = > log > NN (35 i, o)
k=1 1=1 k=1
|m EM algorithm:let p!, = N (zs; pi,, of).
)‘pr,k
— .
D k=1 )\Zpg,k

® E-step: ¢/ =polz=klz] =
2@1 Q?lelei
® M-step: pitt ="
D i1 qﬁu
O g = ) (= gt T
O-ki o Zm t+1

- i=1 4k
1
t11 t11
Ak m E :qi,k .
i=1
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GMMs - EM Algorithm

® Proof: M-step.

® Auxiliary function:

M m M m
ZZP@Z_M%] lngg[Qﬁz,Z_k ZZszlogPH[xuz_k]
k=1 1=1 k=1 1=1
L 1 1
Zq’t k [log Ak — 5@ — ) o @ — ) - 5 10g(27) + 7 log o ]

k=1 1=1

® Optimization for fixed ¢ and ny A =10
OL -

g _, 7; oL o

Qﬂk g ;q k( Mk EMk )\k Zq K

OL 1« -

— = i O, —\X; — L; —

9T~ 2 2 kol = (@i =)@ —)T)
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HMMs - EM Algorithm

m Use EM algorithm in discrete case to determine
the probability of each transition e at time ¢ : wle].

B Use GMMs update combined with the probability
for each observation to be emitted from each

transition e.
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Initialization

B Selection of model:
® HMM topology (states and transitions).

® number of mixtures (M).

® Flat start: all distributions with same average
values (mean and variance) computed over entire

training set.

B Existing hand-labeled segmentation: partial
segmentation basis.

B Uniform segmentation: equal number of HMM
transitions per training example.

Mehryar Mohri - Speech Recognition page 22 Courant Institute, NYU



Forced Alignment

| Viterbi training: approximate but faster method to
determine HMM path.

B Segmental K-means: approximate but faster
method to determine which Gaussian of a mixture
the training instance has been sampled from.
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Viterbi Alignment

B [dea:faster alignment based on most likely path.
® use current acoustic model.

® align sequence of feature vectors with most
likely path (best path algorithm, e.g.,Viterbi).
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Segmental K-Means

B [dea: use clustering algorithm to determine which
Gaussian generated each observation.

B Solution: use K-means clustering algorithm to
initialize distribution means.

® |nitialization: select K centroids ci, ..., ck.

® Repeat until no centroid change:

® for each pointz; find closest centroid ¢; and
assign z; to cluster ;.

® for each cluster j, redefine c;as the centre of
mass.
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® Convergence rate of K-means: subject of current
research.

® GMM EM algorithm: soft version of K-means.
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Variable Number of Mixtures

B Problems:
® number of mixtures required.
® possible over- or underfitting.
| Solution:
® originally single Gaussian distribution.

® create two-component mixture with slightly
perturbed means i - ¢ with the same
covariance matrix.

® model parameters reestimated until desired
complexity reached.
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Acoustic Modeling

| |n practice:

® complicated recipes or heuristics with large
number of ad hoc techniques.

® key skilled human supervision: choice of initial
parameters to avoid local minima, segmentation,
choice and number of parameters.

® computationally very costly: may take many days
of several processors in large-vocabulary speech
recognition.

Mehryar Mohri - Speech Recognition page 28 Courant Institute, NYU



Improvements

® Adaptation (VTLN, MLLR).
® Ensemble methods (ROVER).
| Better features (e.g., LDA, MMI).

| Discriminative training.
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