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Expectation-Maximization (EM) algorithm

Hidden-Markov Models

This Lecture
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Latent Variables

Definition: unobserved or hidden variables, as 
opposed to those directly available at training and 
test time.

• example: mixture models, HMMs.

Why latent variables?

• naturally unavailable variables: e.g., economics 
variables.

• modeling: latent variables introduced to model 
dependencies.
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ML with Latent Variables

Problem: 

• with fully observed variables, ML is often 
straightforward.

• with latent variables, log-likelihood contains a 
sum (harder to find the best parameter values):

Idea: use current parameter values to estimate 
latent variables and use those to re-estimate 
parameter values        EM algorithm.
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L(θ, x) = log pθ[x] = log
∑

z

pθ(x, z) = log
∑

z

pθ[z|x]pθ[x].
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EM Theorem

Theorem: for any   , and parameter values   and   ,

Proof:
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θ θ
′

x

L(θ′, x) − L(θ, x) = log pθ′ [x] − log pθ[x]

=
∑

z

pθ[z|x] log pθ′ [x] −
∑

z

pθ[z|x] log pθ[x]

=
∑

z

pθ[z|x] log
pθ′ [x, z]

pθ′ [z|x]
−

∑

z

pθ[z|x] log
pθ[x, z]

pθ[z|x]

=
∑

z

pθ[z|x] log
pθ[z|x]

pθ′ [z|x]
+

∑

z

pθ[z|x] log pθ′ [x, z] −
∑

z

pθ[z|x] log pθ[x, z]

= D(pθ[z|x]‖pθ′ [z|x]) +
∑

z

pθ[z|x] log pθ′ [x, z] −
∑

z

pθ[z|x] log pθ[x, z]

≥
∑

z

pθ[z|x] log pθ′ [x, z] −
∑

z

pθ[z|x] log pθ[x, z].

L(θ′, x) − L(θ, x) ≥
∑

z

pθ[z|x] log pθ′ [x, z] −
∑

z

pθ[z|x] log pθ[x, z].
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EM Idea

Maximize expectation:

Iterations:

• compute           for current value of   .

• compute expectation and find maximizing   .
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EM Algorithm

Algorithm: maximum-likelihood meta algorithm for 
models with latent variables. 

• E-step:                      .

• M-step:                                                       .

Interpretation:

• E-step: posterior probability of latent variables 
given observed variables and current parameter.

• M-step: maximum-likelihood parameter given all 
data.
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q
t+1 ← pθt [z|x]

θt+1 ← argmax
θ

∑

z

qt+1(z|x) log pθ[x, z]

(Dempster, Laird, and Rubin, 1977; Wu, 1983)
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EM Algorithm - Notes

Applications:

• mixture models, e.g., Gaussian mixtures. Latent 
variables: which model generated points.

• HMMs (Baum-Welsh algorithm).
Notes:

• positive: each iteration increases likelihood. No 
parameter tuning.

• negative: can converge to local optima. Note 
that likelihood could converge but not 
parameter. Dependence on initial parameter.
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EM = Coordinate Ascent

Theorem: EM = coordinate ascent applied to

• E-step:                                  .

• M-step:                                    .

Proof: the E-step follows the two identities
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A(q, θ) =
∑

z

q[z|x] log
pθ[x, z]

q[z|x]

=
∑

z

q[z|x] log pθ[x, z] −
∑

z

q[z|x] log q[z|x].

qt+1
← argmax

q

A(q, θt)

A(q, θ) ≤ log
∑

z

q[z|x]
pθ[x, z]

q[z|x]
= log

∑

z

pθ[x, z] = log pθ[x] = L(θ, x),

A(pθ[z|x], θ) =
∑

z

pθ[z|x] log pθ[x] = log pθ[x] = L(θ, x).

θt+1
← argmax

θ

A(qt+1, θ)
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EM = Coordinate Ascent

Proof (cont.): finally, note that

coincides with the M-step of EM.
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argmax
θ

A(qt+1, θ) = argmax
θ

∑

z

qt+1[z|x] log pθ[x, z],
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EM - Extensions and Variants

Generalized EM (GEM): maximization is not 
necessary at all steps since any (strict) increase of 
the auxiliary function guarantees an increase of 
the log-likelihood.

Sparse EM: posterior probabilities computed at 
some points in E-step.
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(Dempster et al., 1977; Jamshidian and Jennrich, 1993; Wu, 1983)
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Expectation-Maximization (EM) algorithm

Hidden-Markov Models

This Lecture
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Motivation

Data: sample of    sequences over alphabet   
drawn i.i.d. according to some distribution    :

Problem: find sequence model that best estimates 
distribution   .

Latent variables: observed sequences may have 
been generated by model with states and 
transitions that are hidden or unobserved.

13

m Σ

D

xi
1, x

i
2, . . . , x

i
ki

, i = 1, . . . , m.

D



Mehryar Mohri - Speech Recognition Courant Institute, NYUpage

Example

Observations: sequences of Heads and Tails.

Model:
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H, T, T, H, T, H, T, H, H, H, T, T, . . . , H.

0

H/.3
1T/.7

T/.4

2

H/.6

T/.4

T/.5

H/.1

(0, H, 0), (0, T, 1), (1, T, 1), . . . , (2, H, 2).unobserved paths:

observed sequence:
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Hidden Markov Models

Definition: probabilistic automata, generative view.

• discrete case: finite alphabet   .

• transition probability:                      .

• emission probability:                       .

• simplification: for us,  

Illustration:
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Σ

Pr[transition e]

w[e] = Pr[a|e] Pr[e].

Pr[emission a|e]

0

a/.3 a/.2

a/.2
b/.1

/.5
c/.2
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Other Models

Outputs at states (instead of transitions): 
equivalent model, dual representation.

Non-discrete case: outputs in     .

• fixed probabilities replaced by distributions, e.g., 
Gaussian mixtures.

• application to acoustic modeling.
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Three Problems

Problem 1: given sequence               and hidden 
Markov model    compute                   .

Problem 2: given sequence               and hidden 
Markov model    find most likely path                    
that generated that sequence.

Problem 3: estimate parameters   of a hidden 
Markov model via ML:
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(Rabiner, 1989)

x1, . . . , xk

pθ pθ[x1, . . . , xk]

x1, . . . , xk

pθ π = e1, . . . , er

θ

θ! = argmax
θ

pθ[x].
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P1: Evaluation

Algorithm: let    represent a finite automaton 
representing the sequence                   and let    
denote the current hidden Markov model. 

• Then,

• Thus, it can be computed using composition and 
a shortest-distance algorithm in time               .
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X

x = x1 · · ·xk H

pθ[x] =
∑

π∈X◦H

w[π].

O(|X||H|)
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P2: Most Likely Path

Algorithm: shortest-path problem in             
semiring.

• any shortest-path algorithm applied to the 
result of the composition         . In particular, 
since the automaton is acyclic, with a linear-time 
shortest-path algorithm, the total complexity is 
in                                  .

• a traditional solution is to use the Viterbi 
algorithm.
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(max,×)

X ◦ H

O(|X ◦ H|) = O(|X||H|)
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P3: Parameter Estimation

Baum-Welsh algorithm: special case of EM applied 
to HMMs.

• Here,   represents the transitions weights      .

• The latent or hidden variables are paths   .

• M-step:
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θ w[e]

π

(Baum, 1972)

argmax
θ

∑

π

pθ′ [π|x] log pθ[x, π]

subject to ∀q ∈ Q,
∑

e∈E[q]

wθ[e] = 1.
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P3: Parameter Estimation

Using Lagrange multipliers    ,         , the problem 
consists of setting the following partial derivatives 
to zero:

                only for paths   labeled with   :             .

In that case,                               , where      is the 
number of occurrences of    in   .
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λq q ∈ Q

∂

∂wθ[e]

[

∑

π

pθ′ [π|x] log pθ[x, π] −
∑

q

λq

∑

e∈E[q]

wθ[e]
]

= 0

⇔
∑

π

pθ′ [π|x]
∂ log pθ[x, π]

∂wθ[e]
− λorig[e] = 0.

pθ[x, π] != 0 π x π ∈ Π(x)

pθ[x, π] =
∏

e

wθ[e]
|π|e |π|e

e π
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P3: Parameter Estimation

Thus, the equation with partial derivatives can be 
rewritten as
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∑

π∈Π(x)

pθ′ [π|x]
|π|e
wθ[e]

= λorig(e)

⇔ wθ[e] =
1

λorig(e)

∑

π∈Π(x)

pθ′ [π|x]|π|e

⇔ wθ[e] =
1

λorig(e)pθ′ [x]

∑

π∈Π(x)

pθ′ [x, π]|π|e

⇔ wθ[e] ∝
∑

π∈Π(x)

pθ′ [x, π]|π|e.
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wθ[e] ∝
k∑

i=1

αi−1(θ
′)wθ′ [e]βi(θ

′)

P3: Parameter Estimation

But,                                                            .

Thus, 

with 

23

∑

π∈Π(x)

pθ′ [x, π]|π|e =
k∑

i=1

αi−1(θ
′)wθ′ [e]βi(θ

′)

αi(θ
′) = pθ′ [x1, . . . , xi ∧ q = orig[e]]

βi(θ
′) = pθ′ [xi, . . . , xk|dest[e]].

Can be computed using forward-backward algorithms, or, for us, 
shortest-distance algorithms.

Expected 
number of 
times 
through 
transition e.
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