Speech Recognition Lecture 4: Weighted Transducer Software Library

Mehryar Mohri
Courant Institute of Mathematical Sciences
mohri@cims.nyu.edu

Software Libraries

■ FSM Library: Finite-State Machine Library. General software utilities for building, combining, optimizing, and searching weighted automata and transducers (MM, Pereira, and Riley, 2000).

http://www.research.att.com/projects/mohri/fsm

OpenFst Library: Open-source Finite-state transducer Library (Allauzen et al., 2007).

http://www.openfst.org

Software Libraries

GRM Library: Grammar Library. General software collection for constructing and modifying weighted automata and transducers representing grammars and statistical language models (Allauzen, MM, and Roark, 2005).

http://www.research.att.com/projects/mohri/grm

DCD Library: Decoder Library. General software collection for speech recognition decoding and related functions (MM and Riley, 2003).

http://www.research.att.com/~fsmtools/dcd

FSM Library

- The FSM utilities construct, combine, minimize, and search weighted finite-states transducers.
 - User Program Level: Programs that read from and write to files or pipelines, fsm(1): fsmintersect in Lfsm in 2.fsm > out.fsm
 - C(++) Library Level: Library archive of C(++) functions that implements the user program level, fsm(3):

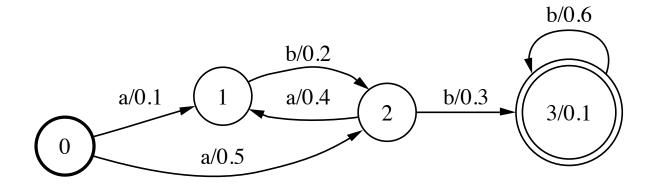
```
Fsm in I = FSMLoad("in I.fsm");
Fsm in 2 = FSMLoad("in 2.fsm");
Fsm out = FSMIntersect(fsm I, fsm 2);
FSMDump("out.fsm", out);
```

 Definition Level: Specification of labels, of costs, and of types of FSM representations.

This Lecture

- Weighted automata and transducers
- Rational operations
- Elementary unary operations
- Fundamental binary operations
- Optimization algorithms
- Search algorithms

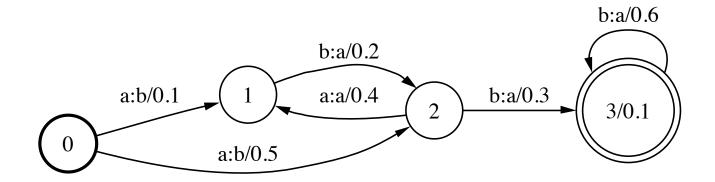
Weighted Automata



$$[[A]](x) = \begin{cases} \text{Sum of the weights of all successful} \\ \text{paths labeled with } x \end{cases}$$

$$[[A]](abb) = .1 \times .2 \times .3 \times .1 + .5 \times .3 \times .6 \times .1$$

Weighted Transducers



$$[[T]](x,y) =$$
Sum of the weights of all successful paths with input x and output y .

$$[[T]](abb, baa) = .1 \times .2 \times .3 \times .1 + .5 \times .3 \times .6 \times .1$$

Weight Sets: Semirings

- A semiring $(\mathbb{K}, \oplus, \otimes, \overline{0}, \overline{1})$ is a ring that may lack negation.
 - sum: to compute the weight of a sequence (sum of the weights of the paths labeled with that sequence).
 - product: to compute the weight of a path (product of the weights of constituent transitions).

Semirings - Examples

SEMIRING	Set	\oplus	\otimes	$\overline{0}$	$\overline{1}$
Boolean	$\{0, 1\}$	V	\wedge	0	1
Probability	\mathbb{R}_+	+	×	0	1
Log	$\mathbb{R} \cup \{-\infty, +\infty\}$	\oplus_{\log}	+	$+\infty$	0
Tropical	$\mathbb{R} \cup \{-\infty, +\infty\}$	min	+	$+\infty$	0

with \bigoplus_{\log} defined by: $x \bigoplus_{\log} y = -\log(e^{-x} + e^{-y})$.

Paths - Definitions and Notation

Path π input label output label $p[\pi] = i[\pi] : o[\pi]$ next state or destination state

Sets of paths

- $ullet P(R_1,R_2)$: paths from $R_1\subseteq Q$ to $R_2\subseteq Q$.
- $ullet P(R_1,x,R_2)$: paths in $P(R_1,R_2)$ with input label x.
- $ullet P(R_1,x,y,R_2)$: paths in $P(R_1,x,R_2)$ with output label y.

General Definitions

- \blacksquare Alphabets: input Σ , output Δ .
- \blacksquare States: Q, initial states I, final states F.
- Transitions: $E \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times (\Delta \cup \{\epsilon\}) \times \mathbb{K} \times Q$.
- Weight functions:
 - ullet initial: $\lambda:I o \mathbb{K}$.
 - final: $\rho:F \to \mathbb{K}$.

Automata and Transducers - Definitions

lacksquare Automaton $A=(\Sigma,Q,I,F,E,\lambda,
ho)$

$$\forall x \in \Sigma^*,$$

$$\llbracket A \rrbracket(x) = \bigoplus_{\pi \in P(I, x, F)} \lambda(p[\pi]) \otimes w[\pi] \otimes \rho(n[\pi])$$

■ Transducer $T = (\Sigma, \Delta, Q, I, F, E, \lambda, \rho)$

$$\forall x \in \Sigma^*, y \in \Delta^*,$$

$$\llbracket T \rrbracket(x,y) = \bigoplus_{\pi \in P(I,x,y,F)} \lambda(p[\pi]) \otimes w[\pi] \otimes \rho(n[\pi])$$

FSM File Types

- Textual format
 - automata/acceptor files,
 - transducer files,
 - symbols files.
- Binary format: compiled representation used by all FSM utilities.

Compiling, Printing, and Drawing

Compiling

- fsmcompile -s tropical -iA.syms <A.txt >A.fsm
- fsmcompile -s log -iA.syms -oA.syms -t <T.txt >T.fsm

Printing

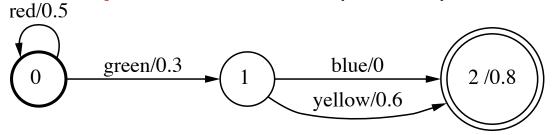
- fsmprint -iA.syms <A.fsm >A.txt
- fsmprint -iA.syms -oA.syms <T.fsm >T.txt

Drawing

- fsmdraw -iA.syms <A.fsm | dot -Tps >A.ps
- fsmdraw -iA.syms -oA.syms <T.fsm | dot -Tps >T.ps

Automata/Acceptors

Graphical Representation (A.ps)



Acceptor file (A.txt)

```
0 0 red .5
0 1 green .3
1 2 blue
1 2 yellow .6
2 .8
```

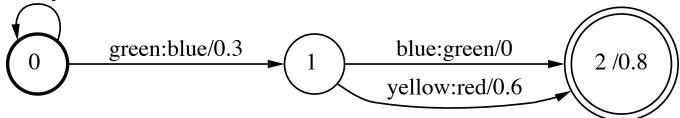
Symbols file (A.syms)

```
red 1
green 2
blue 3
yellow 4
```

Transducers

Graphical Representation (T.ps)

red:yellow/0.5



Transducer file (T.txt)

```
0 0 red yellow .5
0 1 green blue .3
1 2 blue green
1 2 yellow red .6
2 .8
```

Symbols file (T.syms)

red 1
green 2
blue 3
yellow 4

This Lecture

- Weighted automata and transducers
- Rational operations
- Elementary unary operations
- Fundamental binary operations
- Optimization algorithms
- Search algorithms

Rational Operations

Sum

$$[\![T_1 \oplus T_2]\!](x,y) = [\![T_1]\!](x,y) \oplus [\![T_2]\!](x,y)$$

Product

$$[\![T_1 \otimes T_2]\!](x,y) = \bigoplus_{\substack{x = x_1 x_2 \\ y = y_1 y_2}} [\![T_1]\!](x_1,y_1) \otimes [\![T_2]\!](x_2,y_2).$$

Closure

$$[T^*](x,y) = \bigoplus_{n=0}^{\infty} [T]^n(x,y)$$

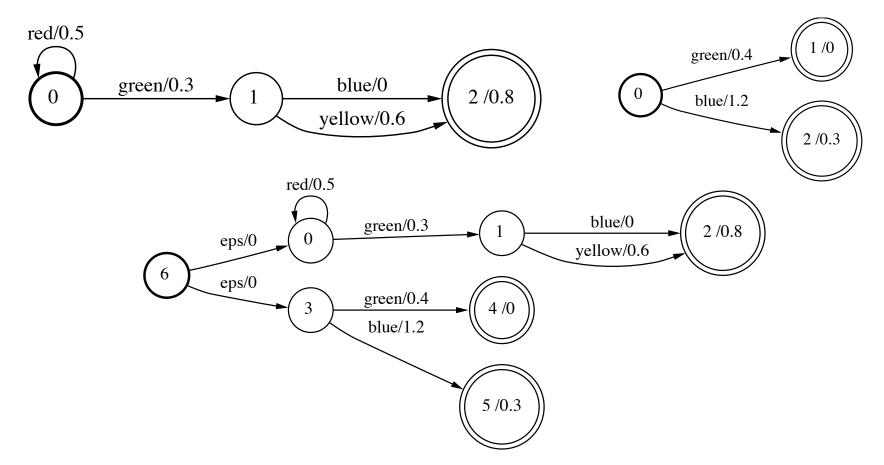
- Conditions (on the closure operation): condition on T: e.g., weight of ε -cycles = $\overline{0}$ (regulated transducers), or semiring condition: e.g., $\overline{1} \oplus x = \overline{1}$ as with the tropical semiring (more generally locally closed semirings).
- Complexity and implementation:
 - linear-time complexity:

$$O((|E_1| + |Q_1|) + (|E_2| + |Q_2|))$$
 or $O(|Q| + |E|)$

• lazy implementation.

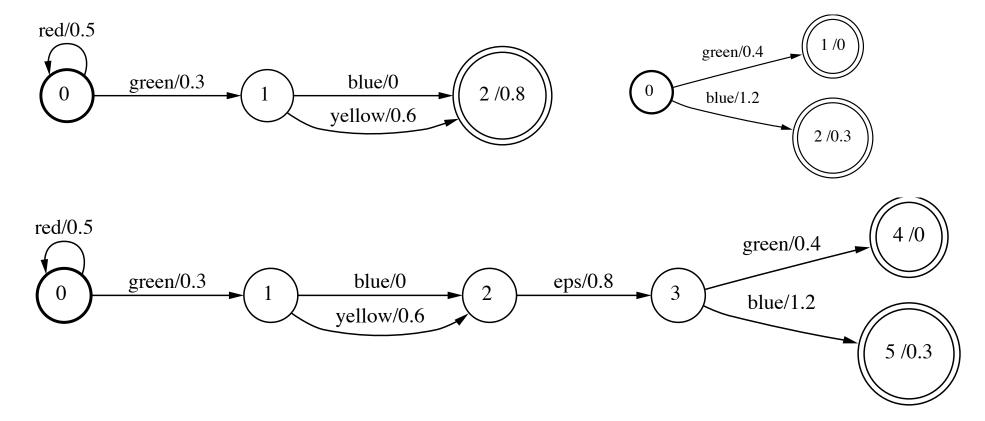
Sum - Illustration

- Program: fsmunion A.fsm B.fsm >C.fsm
- Graphical representation:



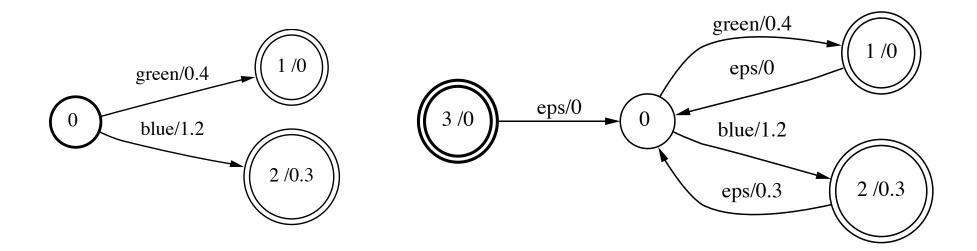
Product - Illustration

- Program: fsmconcat A.fsm B.fsm >C.fsm
- Graphical representation:



Closure - Illustration

- Program: fsmclosure B.fsm >C.fsm
- Graphical representation:



This Lecture

- Weighted automata and transducers
- Rational operations
- Elementary unary operations
- Fundamental binary operations
- Optimization algorithms
- Search algorithms

Elementary Unary Operations

Reversal

$$[\![\widetilde{T}]\!](x,y) = [\![T]\!](\widetilde{x},\widetilde{y})$$

Inversion

$$[T^{-1}](x,y) = [T](y,x)$$

Projection

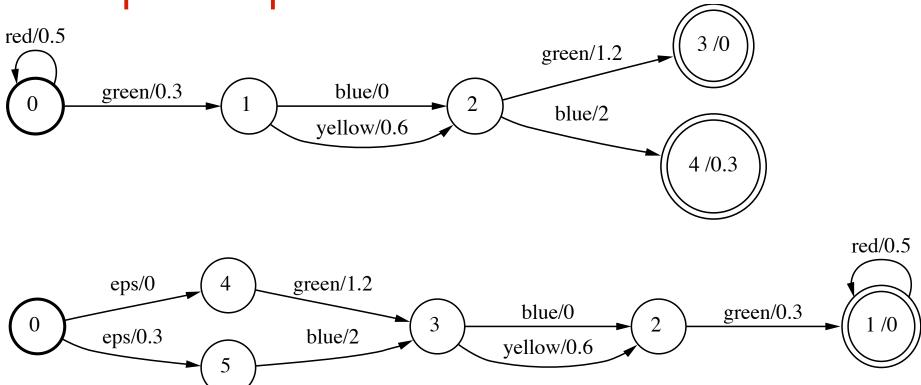
$$\llbracket A \rrbracket(x) = \bigoplus_{y} \llbracket T \rrbracket(x,y)$$

Linear-time complexity, lazy implementation (not for reversal).

Reversal - Illustration

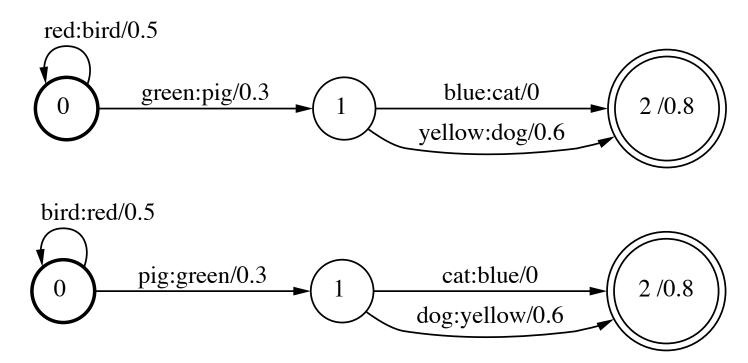
Program: fsmreverse A.fsm >C.fsm

Graphical representation:



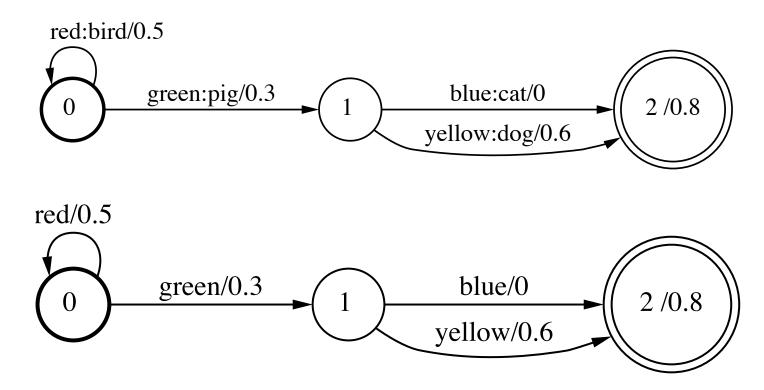
Inversion - Illustration

- Program: fsminvert A.fsm >C.fsm
- Graphical representation:



Projection - Illustration

- Program: fsmproject I T.fsm > A.fsm
- Graphical representation:



This Lecture

- Weighted automata and transducers
- Rational operations
- Elementary unary operations
- Fundamental binary operations
- Optimization algorithms
- Search algorithms

Some Fundamental Binary Operations

(Pereira and Riley, 1997; MM et al. 1996)

 \blacksquare Composition $((\mathbb{K}, \oplus, \otimes, \overline{0}, \overline{1})$ commutative)

$$[T_1 \circ T_2](x,y) = \bigoplus_z [T_1](x,z) \otimes [T_2](z,y)$$

Intersection $((\mathbb{K}, \oplus, \otimes, \overline{0}, \overline{1})$ commutative)

$$[\![A_1 \cap A_2]\!](x) = [\![A_1]\!](x) \otimes [\![A_2]\!](x)$$

 \blacksquare Difference (A_2 unweighted and deterministic)

$$[A_1 - A_2](x) = [A_1 \cap \overline{A_2}](x)$$

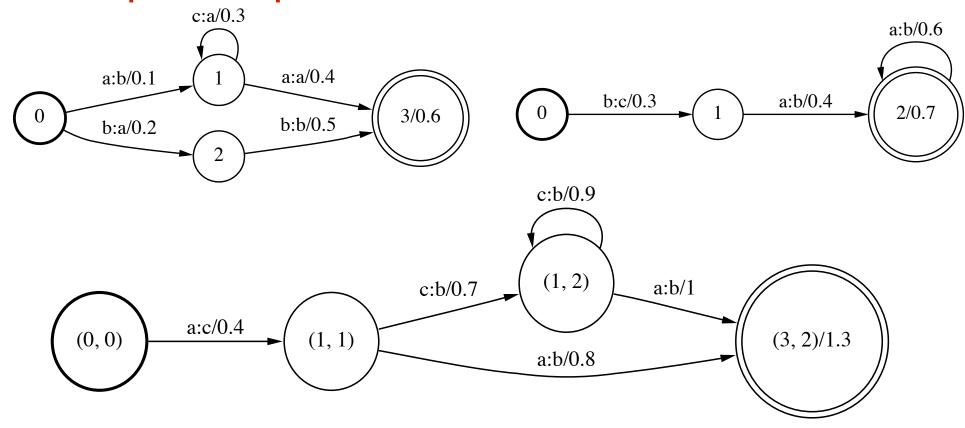
- Complexity and implementation:
 - quadratic complexity:

$$O((|E_1| + |Q_1|)(|E_2| + |Q_2|))$$

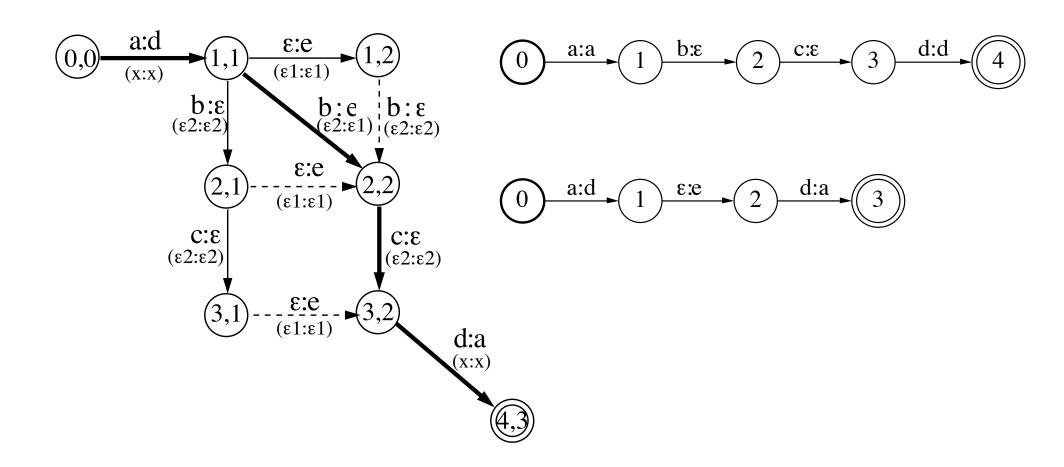
- path multiplicity in presence of ε-transitions: εfilter;
- lazy implementation.

Composition - Illustration

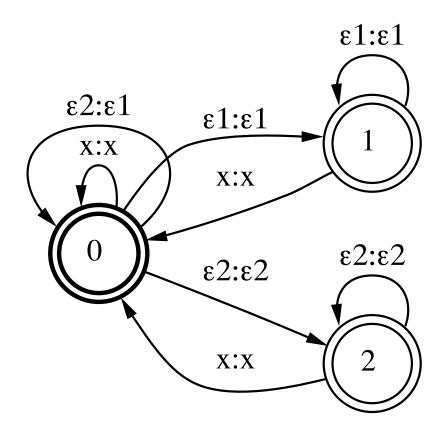
- Program: fsmcompose A.fsm B.fsm >C.fsm
- Graphical representation:



Multiplicity and ε-Transitions - Problem



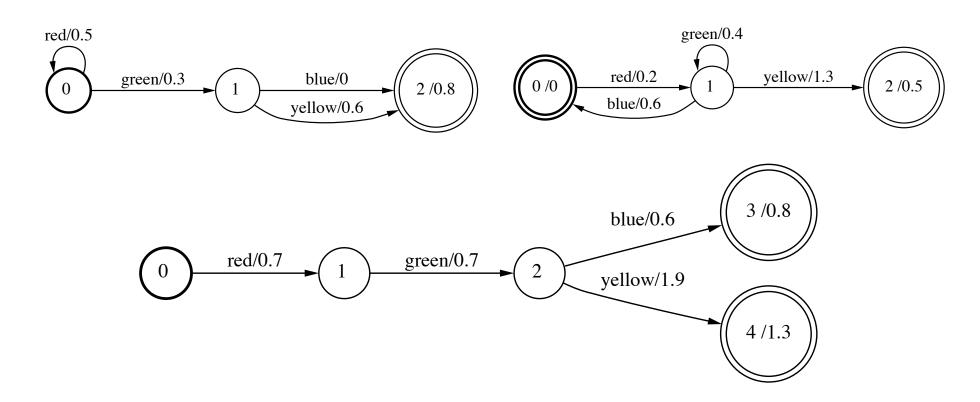
Solution - Filter F for Composition



Replace $T_1 \circ T_2$ with $\tilde{T}_1 \circ F \circ \tilde{T}_2$.

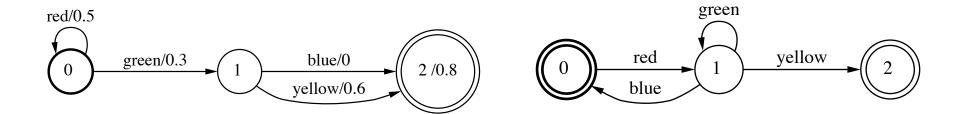
Intersection - Illustration

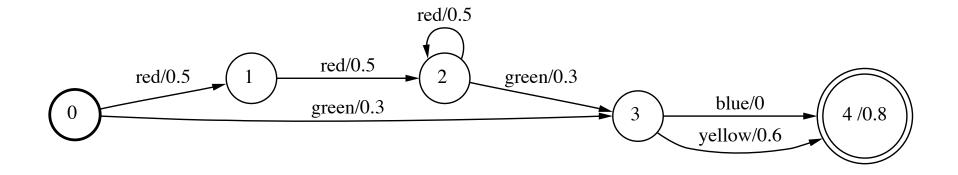
- Program: fsmintersect A.fsm B.fsm >C.fsm
- Graphical representation:



Difference - Illustration

- Program: fsmdifference A.fsm B.fsm >C.fsm
- Graphical representation:





This Lecture

- Weighted automata and transducers
- Rational operations
- Elementary unary operations
- Fundamental binary operations
- Optimization algorithms
- Search algorithms

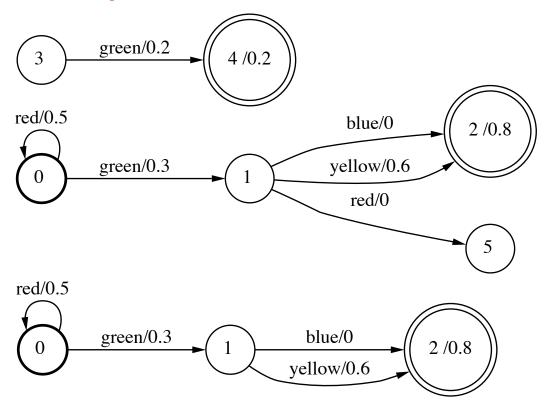
Optimization Algorithms

- Connection: removes non-accessible/noncoaccessible states.
- ε-Removal: removes ε-transitions.
- Determinization: creates equivalent deterministic machine.
- Pushing: creates equivalent pushed/stochastic machine.
- Minimization: creates equivalent minimal deterministic machine.

 Conditions: there are specific semiring conditions for the use of these algorithms, e.g., not all weighted automata or transducers can be determinized using the determinization algorithm.

Connection - Illustration

- Program: fsmconnect A.fsm >C.fsm
- Graphical representation:



Connection - Algorithm

Definition:

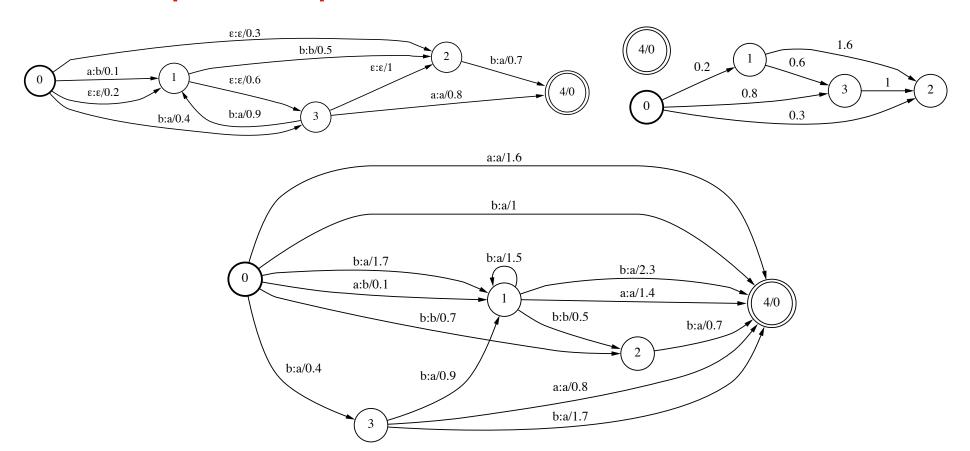
- Input: weighted transducer T_1 .
- Output: equivalent weighted transducer T_2 with all states connected.

Description:

- 3. Depth-first search of T_1 from I_1 .
- 4. Mark accessible and coaccessible states.
- 5. Keep marked states and corresponding transitions.
- \blacksquare Complexity: linear $O(|Q_1| + |E_1|)$.

ε-Removal - Illustration

- Program: fsmrmepsilon T.fsm >TP.fsm
- Graphical representation:



ε-Removal - Algorithm

(MM, 2001)

Definition:

- Input: weighted transducer T_1 .
- Output: equivalent WFST T_2 with no ϵ -transition.

Description:

- Computation of ε-closures.
- Removal of εs.
- Complexity:
 - Acyclic $T_{\epsilon}: O(|Q|^2 + |Q||E|(T_{\oplus} + T_{\otimes})).$
 - General case (tropical semiring):

$$O(|Q||E| + |Q|^2 \log |Q|)$$

Computation of ε-closures

 \blacksquare Definition: for p in Q,

$$C[p] = \{(q, w) : q \in \epsilon[p], d[p, q] = w \neq \overline{0}\},$$

where
$$d[p, q] = \bigoplus_{\pi \in P(p, \epsilon, q)} w[\pi].$$

- Problem formulation: all-pairs shortest-distance problem in T_{ϵ} (T reduced to its ϵ -transitions).
 - closed semirings: generalization of Floyd-Warshall algorithm.
 - k-closed semirings: generic sparse shortest-distance algorithm.

Determinization - Algorithm

(MM, 1997)

Definition:

- ullet Input: weighted automaton or transducer T_1
- Output: equivalent subsequential or deterministic machine T_2 : has a unique initial state and no two transitions leaving the same state share the same input label.

Description:

- 3. Generalization of subset construction: weighted subsets $\{(q_1, w_1), \ldots, (q_n, w_n)\}$, where w_i s are remainder weights.
- 4. Computation of the weight of resulting transitions.

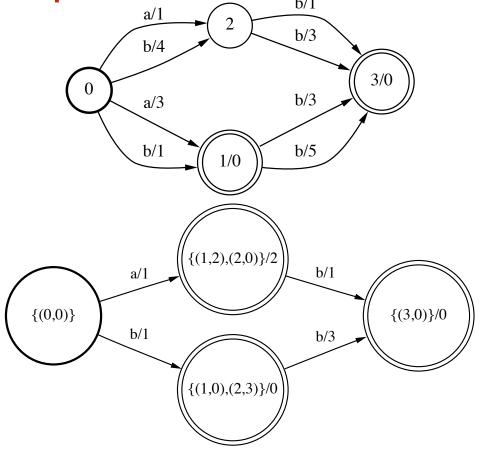
Determinization - Conditions

- Semiring: weakly left divisible semirings.
- Definition: T is determinizable when the determinization algorithm applies to T.
 - All unweighted automata are determinizable.
 - All acyclic machines are determinizable.
 - Not all weighted automata or transducers are determinizable.
 - Characterization based on the twins property.
- Complexity: exponential, but lazy implementation.

Determinization of Weighted Automata - Illustration

Program: fsmdeterminize A.fsm >D.fsm

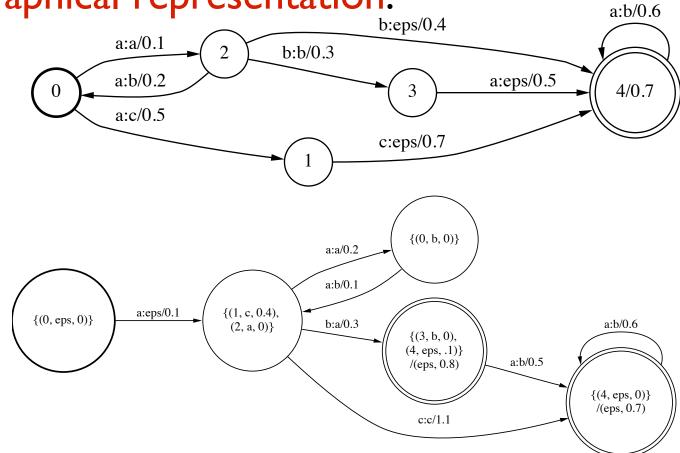
Graphical representation:



Determinization of Weighted Transducers - Illustration

Program: fsmdeterminize T.fsm >D.fsm

Graphical representation:



Pushing - Algorithm

(MM, 1997; 2004)

Definition:

- ullet Input: weighted automaton or transducer T_1
- Output: equivalent automaton or transducer T_2 such that the longest common prefix of all outgoing paths be ϵ or such that the sum of the weights of all outgoing transitions be $\overline{1}$ modulo the string or weight at the initial state.

Description:

1. Single-source shortest distance computation: for each state q,

$$d[q] = \bigoplus_{\pi \in P(q,F)} w[\pi].$$

2. Reweighting: for each transition e such that

$$d[p[e]] \neq \overline{0},$$

$$w[e] \leftarrow (d[p[e]])^{-1}(w[e] \otimes d[n[e]])$$

- Conditions (automata case): weakly divisible semiring, zero-sum free semiring or automaton.
- Complexity:
 - automata case
 - acyclic case: linear $O(|Q| + |E|(T_{\oplus} + T_{\otimes}))$.
 - general case (tropical semiring):

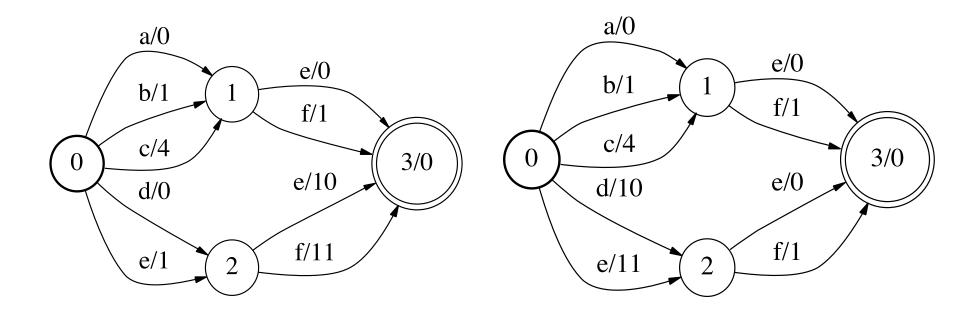
$$O(|Q|\log|Q|+|E|).$$

transducer case:

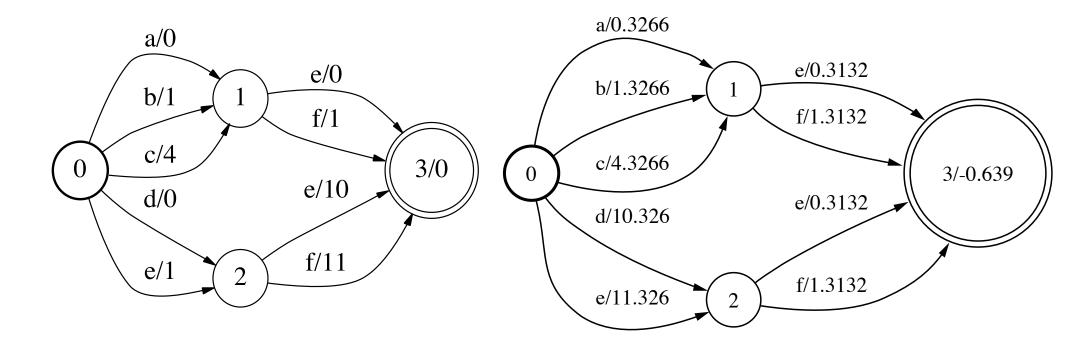
$$O((|P_{max}|+1)|E|).$$

Weight Pushing - Illustration

- Program: fsmpush -ic A.fsm >P.fsm
- Graphical representation:
 - Tropical semiring:

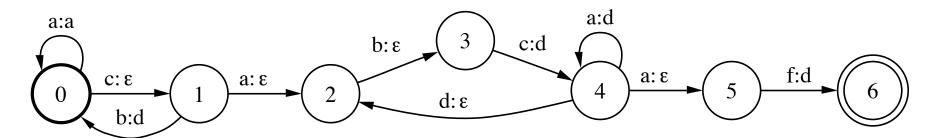


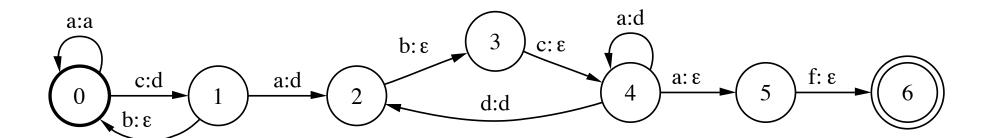
Log semiring:



Label Pushing - Illustration

- Program: fsmpush -il T.fsm >P.fsm
- Graphical representation:





Minimization - Algorithm

(MM, 1997)

Definition:

- Input: deterministic weighted automaton or transducer T_1 .
- Output: equivalent deterministic automaton or transducer T_2 with the minimal number of states and transitions.

Description:

- Canonical representation: use pushing or other algorithm to standardize input automata.
- Automata minimization: encode pairs (label, weight) as labels and use classical unweighted minimization algorithm.

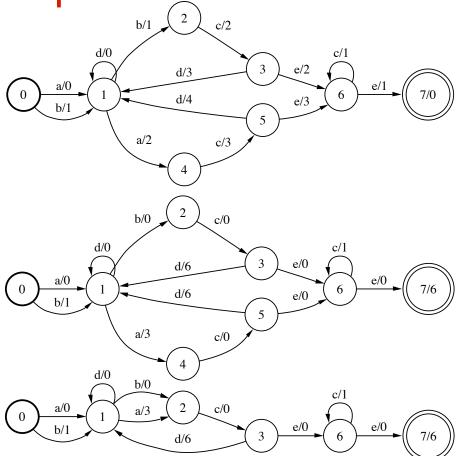
Complexity:

- Automata case
 - acyclic case: linear, $O(|Q| + |E|(T_{\oplus} + T_{\otimes}))$.
 - general case (tropical semiring): $O(|E| \log |Q|)$.
- Transducer case
 - acyclic case: $O(S + |Q| + |E| (|P_{max}| + 1))$.
 - general case (tropical semiring):

$$O(S + |Q| + |E| (\log |Q| + |P_{max}|)).$$

Minimization - Illustration

- Program: fsmminimize D.fsm >M.fsm
- Graphical representation:



Equivalence - Algorithm

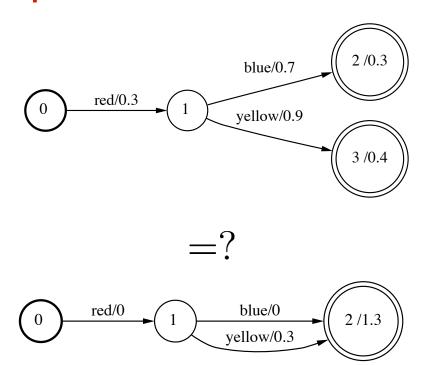
Definition:

- Input: deterministic weighted automata A and B.
- Output: TRUE iff A and B equivalent.
- Description (MM,1997):
 - Canonical representation: use pushing or other algorithm to standardize input automata.
 - Automata minimization: encode pairs (label, weight) as labels and use classical algorithm for testing the equivalence of unweighted automata.
- Complexity: (second stage is quasi-linear)

$$O(|E_1| + |E_2| + |Q_1| \log |Q_1| + |Q_2| \log |Q_2|).$$

Equivalence - Illustration

- Program: fsmequiv [-v] D.fsm M.fsm
- Graphical representation:

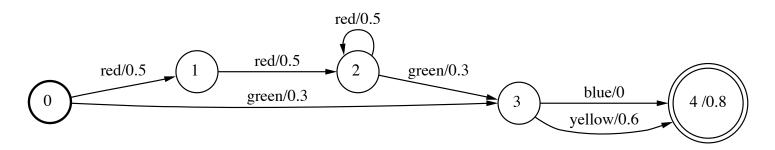


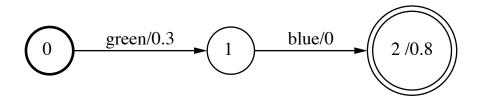
This Lecture

- Weighted automata and transducers
- Rational operations
- Elementary unary operations
- Fundamental binary operations
- Optimization algorithms
- Search algorithms

Single-Source Shortest-Distance Algorithms - Illustration

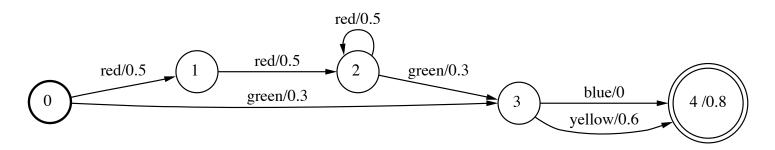
- Program: fsmbestpath [-n N] A.fsm >C.fsm
- Graphical representation:

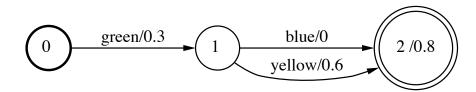




Pruning - Illustration

- Program: fsmprune -c1.0 A.fsm >C.fsm
- Graphical representation:





Summary

FSM Library:

- weighted finite-state transducers (semirings);
- elementary unary operations (e.g., reversal);
- rational operations (sum, product, closure);
- fundamental binary operations (e.g., composition);
- optimization algorithms (e.g., ε-removal, determinization, minimization);
- search algorithms (e.g., shortest-distance algorithms, n-best paths algorithms, pruning).

References

- Cyril Allauzen and Mehryar Mohri. Efficient Algorithms for Testing the Twins Property.
 Journal of Automata, Languages and Combinatorics, 8(2):117-144, 2003.
- Cyril Allauzen, Mehryar Mohri, and Brian Roark. The Design Principles and Algorithms of a Weighted Grammar Library. International Journal of Foundations of Computer Science, 16(3): 403-421, 2005.
- Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wojciech Skut, and Mehryar Mohri.
 OpenFst: a general and efficient weighted finite-state transducer library. In Proceedings of the Ninth International Conference on Implementation and Application of Automata, (CIAA 2007), volume 4783 of Lecture Notes in Computer Science, pages 11-23. Springer, Berlin, 2007.
- Mehryar Mohri. Finite-State Transducers in Language and Speech Processing. Computational Linguistics, 23:2, 1997.
- Mehryar Mohri. Weighted Grammar Tools: the GRM Library. In Robustness in Language and Speech Technology. pages 165-186. Kluwer Academic Publishers, The Netherlands, 2001.
- Mehryar Mohri. Statistical Natural Language Processing. In M. Lothaire, editor, Applied Combinatorics on Words. Cambridge University Press, 2005.

References

- Mehryar Mohri. Generic Epsilon-Removal and Input Epsilon-Normalization Algorithms for Weighted Transducers. International Journal of Foundations of Computer Science, 13(1): 129-143, 2002.
- Mehryar Mohri, Fernando C. N. Pereira, and Michael Riley. The Design Principles of a Weighted Finite-State Transducer Library. Theoretical Computer Science, 231:17-32, January 2000.
- Mehryar Mohri, Fernando C. N. Pereira, and Michael Riley. Weighted Automata in Text and Speech Processing. In Proceedings of the 12th biennial European Conference on Artificial Intelligence (ECAI-96), Workshop on Extended finite state models of language. Budapest, Hungary, 1996. John Wiley and Sons, Chichester.
- Mehryar Mohri and Michael Riley. A Weight Pushing Algorithm for Large Vocabulary Speech Recognition. In Proceedings of the 7th European Conference on Speech Communication and Technology (Eurospeech'01). Aalborg, Denmark, September 2001.
- Fernando Pereira and Michael Riley. Finite State Language Processing, chapter Speech Recognition by Composition of Weighted Finite Automata. The MIT Press, 1997.