Speech Recognition Lecture 3: Weighted Transducer Algorithms

Mehryar Mohri
Courant Institute and Google Research
mohri@cims.nyu.com

This Lecture

- Shortest-distance algorithms
- Composition
- Epsilon-removal
- Determinization
- Pushing
- Minimization

Shortest-Distance Problem

lacktriangle Definition: for any regulated weighted transducer T, define the shortest distance from state q to F as

$$d(q, F) = \bigoplus_{\pi \in P(q, F)} w[\pi].$$

- lacksquare Problem: compute d(q,F) for all states $q\in Q$.
- Algorithms:
 - Generalization of Floyd-Warshall.
 - Single-source shortest-distance algorithm.

Shortest-Distance Problem

lacktriangle Definition: for any regulated weighted transducer T, define the shortest distance from state q to F as

$$d(q, F) = \bigoplus_{\pi \in P(q, F)} w[\pi].$$

- lacksquare Problem: compute d(q,F) for all states $q\in Q$.
- Algorithms:
 - Generalization of Floyd-Warshall.
 - Single-source shortest-distance algorithm.

All-Pairs Shortest-Distance Algorithm

(MM, 2002)

- Assumption: closed semiring (not necessarily idempotent).
- Idea: generalization of Floyd-Warshall algorithm.
- Properties:
 - Time complexity: $\Omega(|Q|^3(T_{\oplus}+T_{\otimes}+T_{\star}))$.
 - Space complexity: $\Omega(|Q|^2)$ with an in-place implementation.

Closed Semirings

(Lehmann, 1977)

Definition: a semiring is closed if the closure is well defined for all elements and if associativity, commutativity, and distributivity apply to countable sums.

Examples:

- Tropical semiring.
- Probability semiring when including infinity or when restricted to well-defined closures.

Pseudocode

```
GEN-ALL-PAIRS(G)
       for i \leftarrow 1 to |Q| do
               for j \leftarrow 1 to |Q| do
                       d[i,j] \leftarrow \bigoplus
                                                   w[e]
                                     e \in E \cap P(i,j)
       for k \leftarrow 1 to |Q| do
               for i \leftarrow 1 to |Q|, i \neq k do
  5
                       for j \leftarrow 1 to |Q|, j \neq k do
  6
                               d[i,j] \leftarrow d[i,j] \oplus (d[i,k] \otimes d[k,k]^* \otimes d[k,j])
  7
  8
               for i \leftarrow 1 to |Q|, i \neq k do
                       d[k,i] \leftarrow d[k,k]^* \otimes d[k,i]
                       d[i,k] \leftarrow d[i,k] \otimes d[k,k]^*
 10
               d[k,k] \leftarrow d[k,k]^*
 11
```

Single-Source Shortest-Distance Algorithm

(MM, 2002)

 \blacksquare Assumption: k-closed semiring.

$$\forall x \in \mathbb{K}, \ \bigoplus_{i=0}^{k+1} x^i = \bigoplus_{i=0}^k x^i.$$

- Idea: generalization of relaxation, but must keep track of weight added to d[q] since the last time q was enqueued.
- Properties:
 - works with any queue discipline and any k-closed semiring.
 - Classical algorithms are special instances.

Pseudocode

```
Generic-Single-Source-Shortest-Distance (G, s)
    for i \leftarrow 1 to |Q|
    do d[i] \leftarrow r[i] \leftarrow \overline{0}
3 \quad d[s] \leftarrow r[s] \leftarrow \overline{1}
4 \quad S \leftarrow \{s\}
5 while S \neq \emptyset
                 do q \leftarrow head(S)
6
                       Dequeue(S)
                       r' \leftarrow r[q]
8
                       r[q] \leftarrow \overline{0}
9
                       for each e \in E[q]
 10
                               do if d[n[e]] \neq d[n[e]] \oplus (r' \otimes w[e])
 11
                                          then d[n[e]] \leftarrow d[n[e]] \oplus (r' \otimes w[e])
12
                                                    r[n[e]] \leftarrow r[n[e]] \oplus (r' \otimes w[e])
 13
                                                    if n[e] \notin S
 14
15
                                                         then ENQUEUE(S, n[e])
16 \ d[s] \leftarrow \overline{1}
```

Notes

Complexity:

depends on queue discipline used.

$$O(|Q| + (T_{\oplus} + T_{\otimes} + C(A))|E| \max_{q \in Q} N(q) + (C(I) + C(E)) \sum_{q \in Q} N(q))$$

- coincides with that of Dijkstra and Bellman-Ford for shortest-first and FIFO orders.
- linear for acyclic graphs using topological order.

$$O(|Q| + (T_{\oplus} + T_{\otimes})|E|)$$

 \blacksquare Approximation: ϵ -k-closed semiring, e.g., for graphs in probability semiring.

This Lecture

- Shortest-distance algorithms
- Composition
- Epsilon-removal
- Determinization
- Pushing
- Minimization

Composition

■ Definition: given two weighted transducer T_1 and T_2 over a commutative semiring, the composed transducer $T=T_1\circ T_2$ is defined by

$$(T_1 \circ T_2)(x,y) = \bigoplus T_1(x,z) \otimes T_2(z,y).$$

- Algorithm:
 - Epsilon-free case: matching transitions.
 - General case: ϵ -filter transducer.
 - Complexity: quadratic, $O(|T_1||T_2|)$.
 - On-demand construction.

Epsilon-Free Composition

- \blacksquare States $Q \subseteq Q_1 \times Q_2$.
- Initial states $I = I_1 \times I_2$.
- \blacksquare Final states $F = Q \cap F_1 \times F_2$.
- Transitions

$$E = \{ ((q_1, q'_1), a, c, w_1 \otimes w_2, (q_2, q'_2)) :$$

$$(q_1, a, b, w_1, q_2), (q'_1, b, c, w_2, q'_2) \in Q \}.$$

Illustration

Program: fsmcompose A.fsm B.fsm >C.fsm fstcompose A.fsm B.fsm >C.fsm

Redundant ε-Paths Problem

(MM et al. 1996)

$$\widetilde{T}_1$$
 $\underbrace{0}_{a:a}$ $\underbrace{1}_{b:\epsilon 2}$ $\underbrace{0}_{c:\epsilon 2}$ $\underbrace{0}_{d:d}$ $\underbrace{0}_{d:d}$

$$T = \widetilde{T}_1 \circ F \circ \widetilde{T}_2.$$

Correctness of Filter

Proposition: filter F allows a unique path between two states of the following grid.

Proof: Observe that a necessary and sufficient condition is that the following sequences be forbidden: ab, ba, ac, and bc.

Correctness of Filter

 \blacksquare Proof (cont.): Let $\sigma = \{a, b, c, x\}$, then set of sequences forbidden is exactly

$$L = \sigma^*(ab + ba + ac + bc)\sigma^*.$$

An automaton representing the complement can be constructed by determ. and complementation.

Other Filters

(Pereira and Riley, 1997)

Sequential Filter.

This Lecture

- Shortest-distance algorithms
- Composition
- Epsilon-removal
- Determinization
- Pushing
- Minimization

Epsilon-Removal

- \blacksquare Definition: given weighted transducer T, create equivalent weighted transducer with no epsilontransition.
- Algorithm components:
 - Computation of the ε -closure at each state:

$$C[p] = \{(q, d_{\epsilon}[p, q]) : d_{\epsilon}[p, q] \neq \overline{0}\} \text{ with } d_{\epsilon}[p, q] = \bigoplus_{\pi \in P(p, \epsilon, q)} w[\pi].$$

- Removal of εs.
- On-demand construction.

Illustration

Main Algorithm

- Shortest-distance algorithms:
 - closed semirings: generalization of Floyd-Warshall algorithm.
 - k-closed semirings: single-source shortest-distance algorithm.
- Complexity: shortest-distance and removal.
 - Acyclic T_{ϵ} : $O(|Q|^2 + |Q||E|(T_{\oplus} + T_{\otimes}))$.
 - General case, tropical semiring:

$$O(|Q||E| + |Q|^2 \log |Q|).$$

This Lecture

- Shortest-distance algorithms
- Composition
- Epsilon-removal
- Determinization
- Pushing
- Minimization

Determinization

- \blacksquare Definition: given weighted transducer T, create equivalent deterministic weighted transducer.
- Algorithm (weakly left divisible semirings):
 - generalization of subset constructions to weighted labeled subsets

$$\{(q_1, x_1, w_1), \ldots, (q_m, x_m, w_m)\}.$$

- complexity: exponential, but lazy implementation.
- not all weighted transducers are determinizable but all acyclic weighted transducers are. Test? For some cases, using the twins property.

Illustration

Illustration

Non-Determinizable Transducer

Twins Property

(Choffrut, 1978; MM 1997)

- \blacksquare Definition: a weighted transducer T over the tropical semiring has the twins property if for any two states q and q' as in the figure, the following holds:
 - c = c';
 - $u^{-1}u' = (uv)^{-1}u'v'$.

Determinizability

(Choffrut, 1978; MM 1997; Allauzen and MM, 2002)

- Theorem: a trim unambiguous weighted automaton over the tropical semiring is determinizable iff it has the twins property.
- Theorem: let T be a weighted transducer over the tropical semiring. Then, if T has the twins property, then it is determinizable.
- Algorithm for testing the twins property:
 - unambiguous automata: $O(|Q|^2 + |E|^2)$.
 - unweighted transducers: $O(|Q|^2(|Q|^2+|E|^2))$.

This Lecture

- Shortest-distance algorithms
- Composition
- Epsilon-removal
- Determinization
- Pushing
- Minimization

Pushing

(MM, 1997; 2004)

- \blacksquare Definition: given weighted transducer T, create equivalent weighted transducer such the sum (longest common prefix) of the weights (output strings) of all outgoing paths be $\overline{1}$ (ϵ) at all states, modulo initial states.
- Algorithm components:
 - Single-source shortest-distance computation

$$d[q] = \bigoplus_{\pi \in P(q,F)} w[\pi].$$

• Reweighting: $w[e] \leftarrow (d[p[e]])^{-1}(w[e] \otimes d[n[e]])$ for each transition e.

Main Algorithm

- Automata: single-source shortest-distance.
 - acyclic case: $O(|Q| + |E|(T_{\oplus} + T_{\otimes}))$.
 - general case tropical semiring: $O(|Q| \log |Q| + |E|)$.
 - general case k-closed semirings

$$O(|Q| + (T_{\oplus} + T_{\otimes} + C(A))|E| \max_{q \in Q} N(q) + (C(I) + C(E)) \sum_{q \in Q} N(q))$$

- general case closed semirings $\Omega(|Q|^3(T_{\oplus}+T_{\otimes}+T_{\star}))$.
- Transducers: $O((|P_{max}|+1)|E|)$.

Illustration

Ilustration

This Lecture

- Shortest-distance algorithms
- Composition
- Epsilon-removal
- Determinization
- Pushing
- Minimization

Minimization

(MM, 1997, 2000, 2005)

- Definition: given deterministic weighted transducer T, create equivalent deterministic weighted transducer with the minimal number of states (and transitions).
- Algorithm components:
 - apply pushing to create canonical representation.
 - apply unweighted automata minimization after encoding (input labels, output label, weight) as a single label.

Algorithm

(MM, 1997, 2000, 2005)

- Automata: pushing and automata minimization, general (Hopcroft, 1971) and acyclic case (Revuz 1992).
 - acyclic case: $O(|Q| + |E|(T_{\oplus} + T_{\otimes}))$.
 - general case tropical semiring: $O(|E| \log |Q|)$.
- Transducers:
 - acyclic case: $O(S + |Q| + |E| (|P_{max}| + 1))$.
 - general case tropical semiring:

$$O(S + |Q| + |E| (\log |Q| + |P_{max}|)).$$

Illustration

Illustration

References

- Cyril Allauzen and Mehryar Mohri. Efficient Algorithms for Testing the Twins Property.
 Journal of Automata, Languages and Combinatorics, 8(2):117-144, 2003.
- John E. Hopcroft. An n log n algorithm for minimizing the states in a finite automaton. In The Theory of Machines and Computations, pages 189-196. Academic Press, 1971.
- Mehryar Mohri. Finite-State Transducers in Language and Speech Processing. Computational Linguistics, 23:2, 1997.
- Mehryar Mohri. Minimization Algorithms for Sequential Transducers. Theoretical Computer Science, 234:177-201, March 2000.
- Mehryar Mohri. Semiring Frameworks and Algorithms for Shortest-Distance Problems.
 Journal of Automata, Languages and Combinatorics, 7(3):321-350, 2002.
- Mehryar Mohri. Generic Epsilon-Removal and Input Epsilon-Normalization Algorithms for Weighted Transducers. International Journal of Foundations of Computer Science, 13(1): 129-143, 2002.
- Mehryar Mohri. Statistical Natural Language Processing. In M. Lothaire, editor, Applied Combinatorics on Words. Cambridge University Press, 2005.

References

- Mehryar Mohri, Fernando C. N. Pereira, and Michael Riley. Weighted Automata in Text and Speech Processing. In Proceedings of the 12th biennial European Conference on Artificial Intelligence (ECAI-96), Workshop on Extended finite state models of language. Budapest, Hungary, 1996. John Wiley and Sons, Chichester.
- Mehryar Mohri, Fernando C. N. Pereira, and Michael Riley. The Design Principles of a Weighted Finite-State Transducer Library. Theoretical Computer Science, 231:17-32, January 2000.
- Mehryar Mohri and Michael Riley. A Weight Pushing Algorithm for Large Vocabulary Speech Recognition. In Proceedings of the 7th European Conference on Speech Communication and Technology (Eurospeech'01). Aalborg, Denmark, September 2001.
- Fernando Pereira and Michael Riley. Finite State Language Processing, chapter Speech Recognition by Composition of Weighted Finite Automata. The MIT Press, 1997.
- Dominique Revuz. Minimisation of Acyclic Deterministic Automata in Linear Time. Theoretical Computer Science 92(1): 181-189, 1992.