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Preliminaries

Finite alphabet   , empty string  .

Set of all strings over   :      (free monoid).

Length of a string         :     .

Mirror image or reverse of a string                   :

A language   : subset of    .
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Σ �

Σ Σ∗

x∈Σ∗ |x|

x = x1 · · · xn

xR = xn · · · x1.

L Σ∗
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Rational Operations

Rational operations over languages:

• union: also denoted            ,

• concatenation:

• closure:
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L∗ =
∞�

n=0

Ln,

L1 ∪ L2 = {x ∈ Σ∗ : x ∈ L1 ∨ x ∈ L2}.

L1 · L2 = {x = uv ∈ Σ∗ : u ∈ L1 ∨ v ∈ L2}.

L1 + L2

where Ln = L · · · L� �� �
n

.
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Regular or Rational Languages

Definition: closure under rational operations of    . 
Thus,             is the smallest subset    of      
verifying 

•         ;

•                        ;

•  

Examples of regular languages over                  :

•    ,              ,        ,                           .
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Σ∗

Rat(Σ∗) 2Σ∗
L

∅ ∈ L

∀x ∈ Σ∗, {x} ∈ L

∀L1, L2 ∈ L, L1 ∪ L2 ∈ L, L1 · L2 ∈ L, L∗
1 ∈ L.

Σ∗ (a + b)∗c

Σ = {a, b, c}

abnc (a + (b + c)∗ba)∗cb
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Finite Automata

Definition: a finite automaton    over the alphabet 
is 4-tuple                where    is a finite set of 
states,          a set of initial states,           a set of 
final states, and    a multiset of transitions which 
are elements of                           .

• a path   in an automaton                       is an 
element of     .

• a path from a state in   to a state in    is called 
an accepting path. Language        accepted by   : 
set of strings labeling accepting paths.
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A
(Q, I, F, E) Q

Σ

I ⊆ Q F ⊆ Q

E
Q× (Σ ∪ {�})×Q

π A = (Q, I, F, E)
E∗

I F
L(A) A
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Finite Automata - Example
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0

b

1
a
b

2
a
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Finite Automata - Some Properties

Trim: any state lies on some accepting path.

Unambiguous: no two accepting paths have the 
same label.

Deterministic: unique initial state, two transitions 
leaving the same state have different labels.

Complete: at least one outgoing transition labeled 
with any alphabet element at any state.

Acyclic: no path with a cycle.

7
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Normalized Automata

Definition: a finite automaton is normalized if 

• it has a unique initial state with no incoming 
transition.

• it has a unique final state with no outgoing 
transition.
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i fA
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Elementary Normalized Automaton

Definition: normalized automaton accepting an 
element                  constructed as follows.
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a ∈ Σ ∪ {�}

0 1a
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Normalized Automata: Union

Construction: the union of two normalized 
automata is a normalized automaton constructed 
as follows.
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i fA

i fA

1 11

2 22

i f
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Normalized Automata: Concatenation

Construction: the concatenation of two 
normalized automata is a normalized automaton 
constructed as follows.
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i fA
1 11 i fA

2 22
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Normalized Automata: Closure

Construction: the closure of a normalized 
automaton is a normalized automaton 
constructed as follows.

12

i fAi0 f0
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Normalized Automata - Properties

Construction properties:

• each rational operation require creating at most 
two states.

• each state has at most two outgoing transitions.

• the complexity of each operation is linear.

13
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Thompson’s Construction

Proposition: let   be a regular expression over the 
alphabet   . Then, there exists a normalized 
automaton    with at most      states representing   . 

Proof:

• linear-time context-free parser to parse regular 
expression.

• construction of normalized automaton starting 
from elementary expressions and following 
operations of the tree.

14

r

Σ
A r

(Thompson, 1968)

2|r|
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Thompson’s Construction - Example
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0 

1 ε

7 
ε

2 a

8 c

3 ε

4 
ε

6 ε

5 

b

9 

ε

ε
ε

ε

Normalized automaton for regular expression           .ab∗ + c
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Regular Languages and Finite Automata

Theorem: A language is regular iff it can be 
accepted by a finite automaton.

Proof: Let                       be a finite automaton.

• for                                                 define

•      is regular for all        since    is finite.

• by recurrence      for all          since

•                                is thus regular.
16

(Kleene, 1956)

A = (Q, I, F, E)

(i, j, k) ∈ [1, |Q|]× [1, |Q|]× [0, |Q|]

Xk
ij = {i→ q1 → q2 → . . .→ qn → j : n ≥ 0, qi ≤ k}.

X0
ij (i, j) E

Xk
ij (i, j, k)

Xk+1
ij = Xk

ij + Xk
i,k+1(X

k
k+1,k+1)

∗Xk
k+1,j .

L(A) =
�

i∈I,f∈F X |Q|
if
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Regular Languages and Finite Automata

Proof: the converse holds by Thompson’s 
construction.

Notes:

• a more general theorem (Schützenberger, 1961) 
holds for weighted automata.

• not all languages are regular, e.g.,                          
is not regular. Let    be an automaton. If              , 
then for large enough   ,        corresponds to a 
path with a cycle:                   ,                     , 
which implies              .

17

L = {anbn : n ∈ N}
A L ⊆ L(A)

n anbn

anbn = apubq apu∗bq ⊆ L(A)
L(A) �= L
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Left Syntactic Congruence

Definition: for any language           , the left 
syntactic congruence is the equivalence relation 
defined by 

•         is sometimes called the partial derivative 
of    with respect to    and denoted     .

18

L ⊆ Σ∗

u ≡L v ⇔ u−1L = v−1L,

where for any          ,         is defined byu ∈ Σ∗ u−1L

u−1L = {w : uw ∈ L}.

u−1L
L u ∂L

∂u
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Regular Languages - Characterization

Theorem: a language   is regular iff the set of         
is finite (      has a finite index).

Proof: let                       be a trim deterministic 
automaton accepting    (existence seen later).

• let   the partial transition function. Then, 

• since                                              , the index 
of      is at most     , thus finite.

19

L u−1L
≡L

A = (Q, I, F, E)
L

δ

u R v ⇔ δ(i, u) = δ(i, v).

also defines an eq. relation with index     .|Q|
δ(i, u) = δ(i, v)⇒ u−1L = v−1L

≡L |Q|
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Regular Languages - Characterization

Proof: conversely, if the set of         is finite, then 
the automaton                       defined by

•                             ;

•                    ,            ;

•                           ;

•                                               ; is well defined 
since                                                    and 
accepts exactly   .

20

u−1L
A = (Q, I, F, E)

Q = {u−1L : u ∈ Σ∗}

i = �−1L = L I = {i}

F = {u−1L : u ∈ L}

E = {(u−1L, a, (ua)−1L) : u ∈ Σ∗}
u−1L = v−1L⇒ (ua)−1L = (va)−1L

L
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Illustration

Minimal deterministic automaton for               :

21

(a + b)∗ab

    L   

b

  a-1  L a

a

  (ab)-1 L b

b

a
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ε-Removal

Theorem: any finite automaton                      
admits an equivalent automaton with no ε-
transition.

Proof: for any state         , let      denote the set of 
states reached from   by paths labeled with  . 
Define                            by

•                      ,               ,                               .

•                                                                    .
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A = (Q, I, F, E)

q ∈ Q �[q]
q �

A� = (Q�, I �, F �, E�)

Q� = {�[q] : q ∈ Q} I � =
�

q∈I

�[q] F � = {�[q] : �[q] ∩ F �= ∅}

E� = {(�[p], a, �[q]) : ∃(p�, a, q�) ∈ E, p� ∈ �[p], q� ∈ �[q]}
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ε-Removal - Illustration
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Determinization

Theorem: any automaton                       without  
-transitions admits an equivalent deterministic 
automaton.

Proof: Subset construction:                            with

•            .

•                                  .

•                                   .

•                                                             .
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�
A = (Q, I, F, E)

A� = (Q�, I �, F �, E�)

Q� = 2Q

I � = {s ∈ Q� : s ∩ I �= ∅}

F � = {s ∈ Q� : s ∩ F �= ∅}

E� = {(s, a, s�) : ∃(q, a, q�) ∈ E, q ∈ s, q� ∈ s�}
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Determinization - Illustration
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Completion

Theorem: any deterministic automaton admits an 
equivalent complete deterministic automaton.

Proof: constructive, see example.
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Complementation

Theorem: let                       be a deterministic 
automaton, then there exists a deterministic 
automaton accepting        .

Proof: by a previous theorem, we can assume    
complete. The automaton                                 
obtained from    by making non-final states final 
and final states non-final exactly accepts        .

27

A = (Q, I, F, E)

L(A)

B = (Σ, Q, I, Q− F, E)
A

A

L(A)
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Complementation - Ilustration
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Regular Languages - Properties

Theorem: regular languages are closed under 
rational operations, intersection, 
complementation, reversal, morphism, inverse 
morphism, and quotient with any set.

Proof: closure under rational operations holds by 
definition.

• intersection: use De Morgan’s law.

• complementation: use algorithm.

• others: algorithms and equivalence relation.

29
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Rational Relations

Definition: closure under rational operations of 
the monoid            , where    and    are finite 
alphabets, denoted by                    .

• examples:         ,                             .

30

Σ∗ ×∆∗ Σ ∆

(a, b)∗(bb, a) + (b, a)(a, b)∗

Rat(Σ∗ ×∆∗)
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Rational Relations - Characterization

Theorem:                           is a rational relation iff 
there exists a regular language                    such 
that 

Proof: use surjective morphism

31

R ⊆ Rat(Σ∗ ×∆∗)
L ⊆ (Σ ∪∆)∗

R = {(πΣ(x), π∆(x)) : x ∈ L}

where     is the projection of              over     
and     the projection over     .

πΣ (Σ ∪∆)∗ Σ∗

π∆ ∆∗

π : (Σ ∪∆)∗ → (Σ∗ ×∆∗)
x→ (πΣ(x), π∆(x)).

(Nivat, 1968)
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Transductions

Definition: a function                   is called a 
transduction from     to     .

• relation associate to   :

• transduction associated to a relation:

• rational transductions: transductions with 
rational relations.

32

τ : Σ∗ → 2∆∗

Σ∗ ∆∗

τ

R(τ) = {(x, y) ∈ Σ∗ ×∆∗ : y ∈ τ(x)}.

∀x ∈ Σ∗, τ(x) = {y : (x, y) ∈ R}.
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Finite-State Transducers

Definition: a finite-state transducer   over the 
alphabets    and    is 4-tuple where    is a finite set 
of states,          a set of initial states,           a set of 
final states, and    a multiset of transitions which 
are elements of                                           .

•   defines a relation via the pair of input and 
output labels of its accepting paths,

33

QΣ
I ⊆ Q F ⊆ Q

E

T
∆

Q× (Σ ∪ {�})× (∆ ∪ {�})×Q

T

R(T ) = {(x, y) ∈ Σ∗ ×∆∗ : I
x:y−−→ F}.
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Rational Relations and Transducers

Theorem: a transduction is rational iff it can be 
realized by a finite-state transducer.

Proof: Nivat’s theorem combined with Kleene’s 
theorem, and construction of a normalized 
transducer from a finite-state transducer.

34
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