Speech Recognition Lecture 12: Lattice Algorithms.

Mehryar Mohri
Courant Institute of Mathematical Sciences
mohri@cims.nyu.edu

This Lecture

- Speech recognition evaluation
- N-best strings algorithms
- Lattice generation
- Discriminative training

Performance Measure

- Accuracy: based on edit-distance of speech recognition transcription and reference transcription.
 - word or phone accuracy.
 - lattice oracle accuracy: edit-distance of lattice and reference transcription.
- Note: performance measure does not match the quantity optimized to learn models.
 - word-error rate lattices.

Word Error Rates

CORPUS	TYPE OF	VOCABULARY	WORD ERROR
(DARPA)	SPEECH	SIZE	RATE
Connected	Read Text	10	0.3%
Digit Strings			
Airline Travel	Spontaneous	2500	2.5%
Information			
Wall Street	Read Text	64,000	6.6%
Journal			
Radio	Mixed	64,000	13%
(Marketplace)			
Switchboard*	Conversational	28,000	37%
	Telephone		
Call Home *	Conversational	28,000	40%
	Telephone		

^{*} Based on 1998 evaluation

Edit-Distance

- Definition: minimal cost of a sequence of edit operations transforming one string into another.
- Edit operations and costs:
 - standard edit-distance definition: insertion, deletions, substitutions, all with same cost one.
 - general case: more general operations, arbitrary non-negative costs.
- Application: measuring word error rate in speech recognition and other string processing tasks.

Local Edits

- Edit operations: insertion: $\epsilon \rightarrow a$, deletion: $a \rightarrow \epsilon$, substitution: $a \rightarrow b$ ($a \neq b$).
- Example: 2 insertions, 3 deletions, 1 substitution

$$c t t g \epsilon \epsilon a c$$

 $\epsilon t a \epsilon g t \epsilon c$

This is called an alignment.

Edit-Distance Computation

- Standard case: textbook recursive algorithm (Cormen, Leiserson, Rivest, 1992), quadratic complexity, O(|x||y|) for two strings x and y.
- General case: (MM, Pereira, and Riley, 2000; MM, 2003)
 - construct tropical semiring edit-distance transducer T_e with arbitrary edit costs.
 - represent x and y by automata X and Y.
 - compute best path of $X \circ T_e \circ Y$.
 - complexity quadratic: $O(|T_e||X||Y|)$.

Global Alignment - Example

Example: c(A, G) = I, c(A, T) = c(G, C) = .5, no cost for matching symbols.

Representation:

echo "A G C T" | farcompilestrings >X.fsm

Global Alignment - Example

- Program: fsmcompose X.fsm Te.fsm Y.fsm fsmbestpath -n 1 >A.fsm
- Graphical representation:

Edit-Distance of Automata

- Definition: the edit-distance of two automata A and B is the minimum edit-distance of a string accepted by A and a string accepted by B.
- Computation:
 - best path of $A \circ T_e \circ B$.
 - complexity for acyclic automata: $O(|T_e||A||B|)$.
- Generality: any weighted transducer in the tropical semiring defines an edit-distance. Learning editdistance transducer using EM algorithm.

This Lecture

- Speech recognition evaluation
- N-best strings algorithms
- Lattice generation
- Discriminative training

N-Best Sequences

- Motivation: rescoring.
 - first pass using a simple acoustic and grammar lattice or N-best list.
 - re-evaluate alternatives with a more sophisticated model or use new information.
- General problem:
 - speech recognition, handwriting recognition.
 - information extraction, image processing.

N-Shortest-Paths Problem

Problem: given a weighted directed graph G, a source state s and a set of destination or final states F, find the N shortest paths in G from s to F.

Algorithms:

- (Dreyfus, 1969): $O(|E| + N \log(|E|/|Q|))$.
- (MM, 2002): shortest-distance algorithm, N-tropical semiring.
- (Eppstein, 2002): $O(|E| + |Q| \log |Q| + N)$.
- + explicit representation of N best paths: $O(|Q|N^2)$.

N-Shortest Strings $\neq N$ -Shortest-Paths

- Problem: given a weighted directed graph G, a source state s and a set of destination or final states F, find the N shortest strings in G from s to F.
- Example: NAB Eval 95.

Thresh	Non-Unique	Unique
1.5	8	2
2.0	24	4
2.5	54	4
3.0	1536	48

N-Shortest Paths

Program: fsmprune -c1.5 lat.fsm | farprintstrings -c -iNAB.wordlist

in addition the launch of Microsoft corporation's windows ninety five software will mean more memory will be required to run -2038.46 in addition the launch of Microsoft corporation's windows ninety five software will mean more memory will be required around -2037.8 in addition the launch of Microsoft corporation's windows ninety five software will mean more memory will be required to run -2037.51 in addition the launch of Microsoft corporation's windows ninety five software will mean more memory will be required to run -2037.42 in addition the launch of Microsoft corporation's windows ninety five software will mean more memory will be required around -2036.85 in addition the launch of Microsoft corporation's windows ninety five software will mean more memory will be required around -2036.76 in addition the launch of Microsoft corporation's windows ninety five software will mean more memory will be required to run -2036.47 in addition the launch of Microsoft corporation's windows ninety five software will mean more memory will be required around -2035.81

N-Shortest Strings

Program: fsmprune -c1.5 lat.fsm | farprintstrings -c -u -iNAB.wordlist

in addition the launch of Microsoft corporation's windows ninety five software will mean more memory will be required to run -2038.46

in addition the launch of Microsoft corporation's windows ninety five software will mean more memory will be required around -2037.8

Algorithms Based on N-Best Paths

(Chow and Schwartz, 1990; Soon and Huang, 1991)

Idea: use K-best paths algorithm to generate $K \gg N$ distincts paths.

Problems:

- Knot known in advance.
- in practive, K may be sometimes quite large, that is $K \sim 2^N$, which affects both time and space complexity.

N-Best String Algorithm

(MM and Riley, 2002)

- Idea: apply N-best paths algorithm to on-the-fly determinization of input automaton. But, N-best paths algorithms require shortest distances to F'.
- Weighted determinization (partial):
 - eliminates redundancy, no determinizability issue.
 - on-demand computation: only the part needed is computed.
 - on-the-fly computation of the needed shortestdistances to final states.

Shortest-Distances to Final States

- Definition: let d(q, F) denote the shortest distance from q to the set of final states F in input (non-deterministic) automaton A, and let d'(q', F') be defined in the same way in the resulting (deterministic) automaton B.
- Theorem: for any state $q' = \{(q_1, w_1), \dots, (q_n, w_n)\}$ in B, the following holds:

$$d'(q', F') = \min_{i=1,...,n} \{w_i + d(q_i, F)\}.$$

Simple N-Shortest-Paths Algorithm

```
1 for p \leftarrow 1 to |Q'| do r[p] \leftarrow 0
2 \quad \pi[(i',0)] \leftarrow \text{NIL}
3 \quad S \leftarrow \{(i',0)\}
4 while S \neq \emptyset
5
               do (p,c) \leftarrow head(S); DEQUEUE(S)
                     r[p] \leftarrow r[p] + 1
6
                     if (r[p] = N \text{ and } p \in F) then exit
                     if r[p] \leq N
8
9
                         then for each e \in E[p]
                                         do c' \leftarrow c + w[e]
10
                                                \pi[(n[e],c')] \leftarrow (p,c)
11
                                                ENQUEUE(S, (n[e], c'))
12
```

N-Best String Alg. - Experiments

NAB 40K Bigram

Additional time to pay for N-best very small even for large N.

N-Best String Alg. - Properties

- Simplicity and efficiency:
 - easy to implement: combine two general algorithms.
 - works with any N-best paths algorithm.
 - empirically efficient.
- Generality:
 - arbitrary input automaton (not nec. acyclic).
 - incorporated in FSM Library (fsmbestpath).

This Lecture

- Speech recognition evaluation
- N-best strings algorithms
- Lattice generation
- Discriminative training

Speech Recognition Lattices

Definition: weighted automaton representing speech recognizer's alternative hypotheses.

Lattice Generation

(Odell, 1995; Ljolje et al., 1999)

Procedure: given transition e in N, keep in lattice transition ((p[e], t'), i[e], o[e], (n[e], t)) with best start time (p[e], t') during Viterbi decoding.

Lattice Generation

- Computation time: little extra computation over one-best.
- Optimization:
 - projection on output (words or phonemes).
 - epsilon-removal.
 - pruning: keeps transitions and states lying on paths whose total weight is within a threshold of the best path.
 - garbage-collection (use same pruning).

Notes

- Heuristics: not all paths within beam are kept in lattice.
- Lattice quality: oracle accuracy, that is best accuracy achieved by any path in lattice.
- Optimizations: weighted determinization and minimization.
 - in general, dramatic reduction of redundancy and size.
 - bad for some lattices, typically uncertain cases.

Speech Recognition Lattice leave/41.9 at/20.1 at/23.5 Mehryar Mohri - Speech Recognition page 28 Courant Institute, NYU

Lattice after Determinization

(MM, 1997)

Lattice after Minimization

(MM, 1997)

This Lecture

- Speech recognition evaluation
- N-best strings algorithms
- Lattice generation
- Discriminative training

Discriminative Techniques

- Maximum-likelihood: parameters adjusted to increase joint likelihood of acoustic and CD phone or word sequences, irrespective of the probability of other word hypotheses.
- Discriminative techniques: takes into account competing word hypotheses and attempts to reduce the probability of incorrect ones.
 - Main problems: computationally expensive, generalization.

Objective Functions

Maximum likelihood (joint):

$$F = \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{m} \log p_{\theta}(\mathbf{o}_{i}, \mathbf{w}_{i}).$$

Conditional maximum likelihood (CML):

$$F = \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{m} \log p_{\theta}(\mathbf{o}_{i} | \mathbf{w}_{i}) = \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{m} \log \frac{p_{\theta}(\mathbf{o}_{i}, \mathbf{w}_{i})}{p_{\theta}(\mathbf{o}_{i})}.$$

Maximum mutual information (MMI/MMIE)

$$F = \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{m} \log \frac{p_{\theta}(\mathbf{o}_{i}, \mathbf{w}_{i})}{p_{\theta}(\mathbf{o}_{i}) p_{\theta}(\mathbf{w}_{i})}.$$

Equivalenty to CML when independent of theta.

References

- Y. Chow and R. Schwartz, The N-Best Algorithm: An Efficient Procedure for Finding top N Sentence Hypotheses. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP '90), Albuquerque, New Mexico, April 1990, pp. 81–84.
- S. E. Dreyfus. An appraisal of some shortest path algorithms. Operations Research, 17:395-412, 1969.
- David Eppstein, Finding the shortest paths, SIAM Journal of Computing, vol.28, no. 2, pp. 652– 673, 1998.
- Andrej Ljolje and Fernando Pereira and Michael Riley, Efficient general lattice generation and rescoring. In Proceedings of the European Conference on Speech Communication and Technology (Eurospeech '99), Budapest, Hungary, 1999.
- Mehryar Mohri. Finite-State Transducers in Language and Speech Processing. Computational Linguistics, 23:2, 1997.
- Mehryar Mohri. Statistical Natural Language Processing. In M. Lothaire, editor, Applied Combinatorics on Words. Cambridge University Press, 2005.

References

- Mehryar Mohri. Edit-Distance of Weighted Automata: General Definitions and Algorithms. International Journal of Foundations of Computer Science, 14(6):957-982, 2003.
- Mehryar Mohri and Michael Riley. An Efficient Algorithm for the N-Best-Strings Problem. In Proceedings of the International Conference on Spoken Language Processing 2002 (ICSLP '02), Denver, Colorado, September 2002.
- Mehryar Mohri, Fernando C. N. Pereira, and Michael Riley. The Design Principles of a Weighted Finite-State Transducer Library. Theoretical Computer Science, 231:17-32, January 2000.
- Julian Odell. The Use of Context in Large Vocabulary Speech Recognition. Ph.D. thesis, 1995. Cambridge University, UK.
- Frank Soong and Eng-Fong Huang, A Tree-Trellis Based Fast Search for Finding the N Best Sentence Hypotheses in Continuous Speech Recognition. In *Proceedings of the International* Conference on Acoustics, Speech, and Signal Processing (ICASSP '91), Toronto, Canada, November 1991, pp. 705–708.