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Speech Recognition Components

Acoustic and pronunciation model:

•             : observation seq.     distribution seq.

•             : distribution seq.     CD phone seq.

•             : CD phone seq.      phoneme seq.

•             : phoneme seq.     word seq.

Language model:          , distribution over word 
seq.
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Continuous Speech Models

Graph topology: 3-state HMM model: for each CD 
phone       .

• Interpretation: beginning, middle, and end of CD 
phone.

Continuous case: transition weights based on 
distributions over feature vectors in     , typically 
with 
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HMM model - Representation

Composite model: obtained by taking the union 
and closure of all CD phone models.

Illustration:
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CD Model Representation

Deterministic transducer representation
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Pronunciation Dictionary

Phonemic transcription

• Example: word data in American English.

Representation
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data D ey dx ax 0.32

data D ey t ax 0.08

data D ae dx ax 0.48

data D ae t ax 0.12
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N-Gram Models - Representation
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Making a backoff model from counts

• Program:
grmmake foo.2g.counts.fsm > foo.2g.lm.fsm

• Graphical Representation:
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Mehryar Mohri Weighted Context-Free Grammars 15
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Recognition Cascade

Combination of components

Viterbi approximation
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Pron. ModelHMM Lang. ModelCD Model

word seq.phoneme seq.CD phone seq. word seq.observ. seq.
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Model Combination

Steps: 

• models represented by weighted transducers.

• Viterbi approximation: semiring change.

• composition of weighted transducers.
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Search Problem

Problem: 

• size of composed transducer prohibitively large.

• visiting all states and transitions impractical.

• how to combine models efficiently and return 
the best transcription?

Consequences:

• pruning.

• search errors.

10
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Specific shortest-distance algorithm

Viterbi Algorithm
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Time-synchronous beam search: at each time   keep 
only states within a fixed threshold    of the best.

Beam Pruning
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Search Modes

On-the-fly composition:                    .

• advantages: components can be modified, e.g., 
dynamic grammars. Memory usage.

Off-line composition: full                     or parts.

• advantage: recognition transducer optimization.
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Key Optimization Ideas

General algorithms: as opposed to ad hoc solutions.

• Recognition transducer redundancy: use 
determinization to reduce or eliminate 
redundancy. But: not all weighted transducers are 
determinizable.

• Recognition transducer size: use minimization to 
reduce space.

• Recognition transducer weight distribution: use 
weight pushing to standardize weight distribution.

14
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Disambiguation & Determinizability

Determinizability of         : use auxiliary symbols 
to deal with homophones and unbounded delay. 
Transformation           according to:

Determinizability of              : self-loops used to 
propagate auxiliary symbols to context-
dependency level,           .

Determinizability of                    : self-loops at 
initial state, auxiliary CD symbols mapped to new 
distinct distribution names,           .
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L ◦ G

r eh d #0 read

r eh d #1 red

C ◦ L ◦ G

L → L̃

H ◦ C ◦ L ◦ G

C → C̃

H → H̃
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Recognition Transducer Optimization

Optimization cascade:

Other more general methods for making weighted 
transducers determinizable (Allauzen and MM, 2004).
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N = push(σε(min(det(H̃ ◦ det(C̃ ◦ det(L̃ ◦ G)))))).

replace auxiliary symbols by ε

(MM and Riley, 2001; MM, Pereira and Riley, 2007)
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Example - G

17

 

0 1

jim/1.386
jill/0.693
bill/1.386 2/0

read/0.400
wrote/1.832
fled/1.771
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Example - L

18

 

0

14jh:jim

10jh:jill

1b:bill

18
r:read

22
r:read

26
r:wrote

5f:fled

15ih:<eps>

11ih:<eps>

2ih:<eps>

19eh:<eps>

23iy:<eps>

27ow:<eps>

6l:<eps>

3
l:<eps>

4
#0:<eps>

<eps>:<eps>

7eh:<eps>
8

d:<eps>

9

#0:<eps>

<eps>:<eps>

12
l:<eps>

13
#0:<eps>

<eps>:<eps>

16
m:<eps>

17
#0:<eps>

<eps>:<eps>

20d:<eps>

21
#0:<eps>

<eps>:<eps>

24d:<eps>
25

#0:<eps>

<eps>:<eps>

28t:<eps> 29#0:<eps>
<eps>:<eps>

30 <eps>:<eps>
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Example 

19
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3
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d:<eps>/0

t:<eps>/0

push(σε(min(det(L̃ ◦ G))))push(σε(min(det(L̃ ◦ G))))push(σε(min(det(L̃ ◦ G))))
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Recognition Transducer Standardization

Minimal deterministic weighted transducers: 
unique up to state renumbering and to any weight 
and output label redistribution that preserves the 
total path weights and output strings.

Weight-pushed transducer: selects a specific 
weight distribution along paths while preserving 
total path weights.

Result is a standardized recognition transducer.

20
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Factoring

Idea: 

• decoder feature: separate representation for 
variable-length HMMs (time and space efficiency).

• To take advantage of this feature, factor integrated 
transducer

Algorithm:

• Replace input of each linear path in    by a single 
label naming an n-state HMM.

• Define gain of the replacement of linear path:

21

N = H
′
◦ F.

N

G(σ) =
∑

π∈Lin(N),i[π]=σ

|σ| − |o[π]| − 1.
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1st-Pass Recognition Networks 
40K NAB Task

22

network states transitions

G 1,339,664 3,926,010
L ◦ G 8,606,729 11,406,721
det(L ◦ G) 7,082,404 9,836,629
C ◦ det(L ◦ G)) 7,273,035 10,201,269
det(H ◦ C ◦ L ◦ G) 18,317,359 21,237,992
F 3,188,274 6,108,907
min(F ) 2,616,948 5,497,952
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1st-Pass Recognition Networks 
40K NAB Eval '95
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transducer x real-time
C ◦ L ◦ G 12.5
C ◦ det(L ◦ G) 1.2
det(H ◦ C ◦ L ◦ G) 1.0
push(min(F )) 0.7

Recognition speed of the first-pass networks in the NAB 
40,000-word vocabulary task at 83% word accuracy.
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Rescoring

24

cheap model
lattice
n best

detailed model

rescoring
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2nd-Pass Recognition Speed 
160K NAB Eval '95

25

network x real-time
C ◦ L ◦ G .18
C ◦ det(L ◦ G) .13
C ◦ push(min(det(L ◦ G))) .02

Recognition speed of the second-pass networks in the 
NAB 160,000-word vocabulary task at 88%.
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 Effect of Vocabulary Size
NAB Eval '95
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Bigram recognition results for vocabularies of (1) 10,000 words,
(2) 20,000 words, (3) 40,000 words, and (4) 160,000 words.

(LG Optimized Only.)
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Effect of N-gram Order
NAB Eval '95
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Recognition results for a (1) 10,000 word bigram, (2) 10,000 word 
trigram, (3) 40,000 word bigram, and (4) 40,000 word trigram. (LG 

Optimized Only.)
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 Effect of Shrink Parameter 
NAB Eval '95
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Recognition results for shrink
factors (Seymore & Rosenfeld, 1996) of 5, 10, and 40. 
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 Effect of Pushing 
1st Pass, 40K NAB Eval '95
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40K-word NAB 1st-pass recognition, 6,108,907-transition determinized 
and factored HMM-to-word transducer [Alpha 21284].
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 Effect of Pushing 
2nd-Pass, 160K NAB Eval '95
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160,000-word vocabulary NAB task, weight-pushing determinized
HMM-to-word transducer lattices [Alpha 21284].
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100K Names Recognition

31

100K names recognition, the effect of weight-pushing 
[SGI~Origin~2000].
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Model Combination by Lattice 
Intersection - SWBD Eval '00

32

Word Error Rate (%)
Model/pass Mod1 Mod2 Mod3 Mod4 Mod5 Mod6
MLLR 30.3 30.2 30.8 30.7 31.4 32.6
Combined 30.3 29.6 28.9 28.8 28.7 28.6
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