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Speech Recognition Components

Acoustic and pronunciation model:

•             : observation seq.     distribution seq.

•             : distribution seq.     CD phone seq.

•             : CD phone seq.      phoneme seq.

•             : phoneme seq.     word seq.

Language model:          , distribution over word 
seq.
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Terminology

Phonemes: abstract units representing sounds in 
words or word sequences, e.g., /aa/, or /t/. 

Phones: acoustic realizations of phonemes, e.g., [t].

Allophones: distinct realizations of the same 
phoneme, typically due to specific dialect, 
phonemic context, or speaking rate. 

• Example: [dx] and [t] can be realizations of /t/ in 
American English as in [s aa dx el] or [s aa t el].
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Pronunciation Problems

Problems: different sources of variability.

• phonetic context: context-dependent models.

• speaker variation (gender, dialect, accent, 
individual, emotion): speaker adaptation with 
about 10 s.

• task or genre variation: domain adaptation.

• effects of environment (source, channel, 
Lombard effect): cepstral mean normalization, 
microphone arrays.
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Context-Dependent Phones

Idea: 

• phoneme pronunciation depends on 
environment (allophones, co-articulation).

• model phone in context     better accuracy.

Context-dependent rules:

• Context-dependent units:

• Allophonic rules:

• Complex contexts: regular expressions.
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ae/b d → aeb,d.

→

t/V ′ V → dx.

(Lee, 1990; Young et al., 1994)
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CD Phones - Speech Recognition

Triphones: simplest and most widely used model.

• context: window of length three.

• example: cat,                                                 .

• cross-word triphones: context spanning word 
boundaries, important for accurate modeling.

• older systems: only word-internal triphones.

Extensions: quinphones (window of size five), 
gender-dependent models.
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CD Model Representation

Non-deterministic transducer representation
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CD Model Representation

Deterministic transducer representation
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Modeling Problems

Parameters: very large numbers for VLVR.

• Number of phones: about     .

• Number of CD phones: possibly                    , 
but not all of them occur (phonotactic 
constraints). In practice, about          .

• Number of HMM parameters: with16 mixture 
components,

Data sparsity: some triphones, particularly cross-
word triphones, do not appear in sample.
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Solutions

Backing-off: use simpler models with shorter 
contexts when triphone not available.

Interpolation: with simpler models such as 
monophone or biphone models.

Parameter reduction: cluster parameters with 
similar characteristics (‘parameter tying’). 

• clustering HMM states.

• better estimates for each state distribution.

10

decision trees.
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Clustering Method

Initially, group together all triphones for the same 
phoneme.

Split group according to decision tree questions 
based on left or right phonetic context.

All triphones (HMM states) at the same leaf are 
clustered (tied).

Advantage: even unseen triphones are assigned to 
a cluster and thus a model.

Questions: which DT questions? Which criterion? 
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Questions

Simple discrete pre-defined binary questions. 
Examples:

• is the phoneme to the left an /l/?

• is the phoneme to the right a nasal?

• is the previous phoneme an unvoiced stop?
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Phonetics

Vowels:

Consonants:
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plosives/stops: affricates:

fricatives:

nasals:

approximants/liquids:
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Sound Features

Example: voiced sound (vocal cords vibrate), nasals 
(e.g., /m/, /n/), approximants (e.g., /l/, /r/, /w/, /j/), 
vowels.
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Clustering CD Phones
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Criterion

Criterion: best question is one that maximizes 
sample likelihood after splitting.

ML evaluation: requires single Gaussians with 
diagonal covariance matrices trained on sample.
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question q, sample log-likelihood L(S)

Best question:

∆L(q) =
[

L(Sl) + L(Sr)
]

− L(S).Log-likelihood difference:

q∗ = argmax
q

L(Sl) + L(Sr).

L(Sl) L(Sr)
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Log-Likelihood

Sample                                .
Diagonal covariance Gaussian:

Log-likelihood for diagonal covariance Gaussian:
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Decision Tree Split

Log-likelihood difference:

Best question:
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Stopping Criteria

Grow-then-prune strategy with cross-validation 
using held-out data set.

Heuristics in VLVR:

• question does not yield significant increase in 
log-likelihood.

• insufficient data for questions.

• computational limitations.
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Full Training Process

Train CI phone HMMs with single Gaussians and 
diagonal covariance.

Create triphone HMMs by replicating CI phone 
models and reestimate parameters.

Apply decision tree clustering to the set of 
triphones representing the same phoneme.

Create Gaussian mixture model using mixture 
splitting technique for each cluster.
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