Speech Recognition Lecture 10: Pronunciation Models.

Mehryar Mohri
Courant Institute of Mathematical Sciences
mohri@cims.nyu.edu

Speech Recognition Components

Acoustic and pronunciation model:

$$\Pr(o \mid w) = \sum_{d,c,p} \Pr(o \mid d) \Pr(d \mid c) \Pr(c \mid p) \Pr(p \mid w).$$

- $\Pr(o \mid d)$: observation seq. \leftarrow distribution seq. $\Pr(d \mid c)$: distribution seq. \leftarrow CD phone seq. $\Pr(c \mid p)$: CD phone seq. \leftarrow phoneme seq. • $\Pr(c \mid p)$: CD phone seq. \leftarrow phoneme seq.
 - $\bullet \Pr(p \mid w)$: phoneme seq. \leftarrow word seq.
 - \blacksquare Language model: $\Pr(w)$, distribution over word seq.

Terminology

- Phonemes: abstract units representing sounds in words or word sequences, e.g., /aa/, or /t/.
- Phones: acoustic realizations of phonemes, e.g., [t].
- Allophones: distinct realizations of the same phoneme, typically due to specific dialect, phonemic context, or speaking rate.
 - Example: [dx] and [t] can be realizations of /t/ in American English as in [s aa dx el] or [s aa t el].

Pronunciation Problems

- Problems: different sources of variability.
 - phonetic context: context-dependent models.
 - speaker variation (gender, dialect, accent, individual, emotion): speaker adaptation with about 10 s.
 - task or genre variation: domain adaptation.
 - effects of environment (source, channel, Lombard effect): cepstral mean normalization, microphone arrays.

Context-Dependent Phones

(Lee, 1990; Young et al., 1994)

Idea:

- phoneme pronunciation depends on environment (allophones, co-articulation).
- model phone in context → better accuracy.
- Context-dependent rules:
 - Context-dependent units: ae/b____ $d \rightarrow ae_{b,d}$.
 - Allophonic rules: t/V'___ $V \rightarrow dx$.
 - Complex contexts: regular expressions.

CD Phones - Speech Recognition

- Triphones: simplest and most widely used model.
 - context: window of length three.
 - ullet example: cat, $pause\ _{pause}k_{ae\ k}ae_{t\ ae}t_{pause}\ pause$.
 - cross-word triphones: context spanning word boundaries, important for accurate modeling.
 - older systems: only word-internal triphones.
- Extensions: quinphones (window of size five), gender-dependent models.

CD Model Representation

(MM, Pereira, Riley, 2007)

Non-deterministic transducer representation

CD Model Representation

(MM, Pereira, Riley, 2007)

Deterministic transducer representation

Modeling Problems

- Parameters: very large numbers for VLVR.
 - Number of phones: about 50.
 - Number of CD phones: possibly $50^3 = 125,000$, but not all of them occur (phonotactic constraints). In practice, about 60,000.
 - Number of HMM parameters: with I 6 mixture components, $60000 \times 3 \times (39 \times 16 \times 2 + 16) \approx 228 M$.
- Data sparsity: some triphones, particularly crossword triphones, do not appear in sample.

Solutions

- Backing-off: use simpler models with shorter contexts when triphone not available.
- Interpolation: with simpler models such as monophone or biphone models.
- Parameter reduction: cluster parameters with similar characteristics ('parameter tying').
 - clustering HMM states.
 - better estimates for each state distribution.
 - decision trees.

Clustering Method

- Initially, group together all triphones for the same phoneme.
- Split group according to decision tree questions based on left or right phonetic context.
- All triphones (HMM states) at the same leaf are clustered (tied).
- Advantage: even unseen triphones are assigned to a cluster and thus a model.
- Questions: which DT questions? Which criterion?

Questions

- Simple discrete pre-defined binary questions. **Examples:**
 - is the phoneme to the left an /l/?
 - is the phoneme to the right a nasal?
 - is the previous phoneme an unvoiced stop?

Phonetics

```
Vowels:
                         pit pet pat putt pot put
                            т
               Long vowels:
                         bean barn born boon burn
                          i۲
                               ai oi
                                        uː
               Diphthongs: bay buy boy no now peer pair poor
                             er ai ər
                                         υG
                                             aυ
                                                  19
                                                       eэ
                                                            บอ
Consonants:
       plosives/stops: pin bin tin din kin gum affricates: chain Jane
            fricatives: fine vine think this seal zeal sheep measure how
               nasals: sum sun sung
approximants/liquids: light right wet yet
```

Sound Features

Example: voiced sound (vocal cords vibrate), nasals (e.g., /m/, /n/), approximants (e.g., /l/, /r/, /w/, /j/), vowels.

Voiceless consonant (surd)	Voiced equivalent
[p] (p in)	[b] (<i>bin</i>)
[t] (<i>ten</i>)	[d] (<i>den</i>)
[k] (<i>con</i>)	[g] (<i>gone</i>)
[tʃ] (<i>chin</i>)	[dʒ] (g in)
[f] (fan)	[v](<i>van</i>)
[θ] (thin, thigh)	[ð] (then, thy)
[s] (<i>sip</i>)	[z] (z ip)
[ʃ] (pre ss ure)	[ʒ] (plea s ure)

Clustering CD Phones

Criterion

- Criterion: best question is one that maximizes sample likelihood after splitting.
- ML evaluation: requires single Gaussians with diagonal covariance matrices trained on sample.

question q, sample log-likelihood L(S)

Log-likelihood difference: $\Delta L(q) = [L(S_l) + L(S_r)] - L(S)$.

 $q^* = \operatorname{argmax} L(S_l) + L(S_r).$ Best question:

Log-Likelihood

- \blacksquare Sample $S = (x_1, \ldots, x_m) \in (\mathbb{R}^N)^m$.
- Diagonal covariance Gaussian:

$$\Pr[x] = \frac{1}{\prod_{k=1}^{N} (2\pi\sigma_k^2)^{1/2}} \prod_{k=1}^{N} \exp\left(-\frac{1}{2} \frac{(x_k - \mu_k)^2}{\sigma_k^2}\right).$$

Log-likelihood for diagonal covariance Gaussian:

$$L(S) = -\frac{1}{2} \sum_{i=1}^{m} \left[\sum_{k=1}^{N} \log(2\pi\sigma_k^2) + \sum_{k=1}^{N} \frac{(x_{ik} - \mu_k)^2}{\sigma_k^2} \right]$$
$$= -\frac{1}{2} \left[m \sum_{k=1}^{N} \log(2\pi\sigma_k^2) + m \sum_{k=1}^{N} \frac{\sigma_k^2}{\sigma_k^2} \right]$$
$$= -\frac{1}{2} \left[mN(1 + \log(2\pi)) + m \sum_{k=1}^{N} \log(\sigma_k^2) \right].$$

Decision Tree Split

Log-likelihood difference:

$$L(S_l) + L(S_r) = -\frac{1}{2}mN(1 + \log(2\pi)) - \frac{1}{2} \left[m_l \sum_{k=1}^{N} \log(\sigma_{lk}^2) + m_r \sum_{k=1}^{N} \log(\sigma_{rk}^2) \right].$$

Best question:

$$q^* = \underset{q}{\operatorname{argmin}} \left[m_l \sum_{k=1}^{N} \log(\sigma_{lk}^2) + m_r \sum_{k=1}^{N} \log(\sigma_{rk}^2) \right],$$

with
$$\sigma_{lk}^2 = \frac{1}{m_l} \sum_{x \in S_l} x_k^2 - \frac{1}{m_l^2} (\sum_{x \in S_l} x_k)^2$$

$$\sigma_{rk}^2 = \frac{1}{m_r} \sum_{x \in S_r} x_k^2 - \frac{1}{m_r^2} (\sum_{x \in S_r} x_k)^2.$$

Stopping Criteria

- Grow-then-prune strategy with cross-validation using held-out data set.
- Heuristics in VLVR:
 - question does not yield significant increase in log-likelihood.
 - insufficient data for questions.
 - computational limitations.

Full Training Process

- Train CI phone HMMs with single Gaussians and diagonal covariance.
- Create triphone HMMs by replicating CI phone models and reestimate parameters.
- Apply decision tree clustering to the set of triphones representing the same phoneme.
- Create Gaussian mixture model using mixture splitting technique for each cluster.

References

- Leo Breiman, Jerome Friedman, Charles J. Stone, and R.A. Olshen. Classifications and Regression Trees. Chapman & Hall, 1984.
- Chen, F. Identification of contextual factors for pronunciation networks. In Proceedings of ICASSP (1990), \$14.9.
- Luc Devroye, Laszlo Gyorfi, Gabor Lugosi. A Probabilistic Theory of Pattern Recognition. Springer, 1996.
- Ladefoged, P., A Course in Phonetics., New York: Harcourt, Brace, and Jovanovich, 1982. Automatic Generation of Lexicons 17.
- Kai-Fu Lee. Context-Dependent Phonetic Hidden Markov Models for Continuous Speech Recognition. IEEE International Conference on Acoustics, Speech, and Signal Processing, 38(4): 599-609, 1990.
- Mehryar Mohri, Fernando C. N. Pereira, and Michael Riley. Speech Recognition with Weighted Finite-State Transducers. In Larry Rabiner and Fred Juang, editors, Handbook on Speech Processing and Speech Communication, Part E: Speech recognition. volume to appear. Springer-Verlag, Heidelberg, Germany, 2007.

References

- Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, 1993.
- Quinlan, J. R. Induction of Decision Trees, in Machine Learning, Volume 1, pages 81-106, 1986.
- Randolph, M. "A data-driven method for discover and predicting allophonic variation," Proc. ICASSP `90, \$14.10, 1990.
- Michael Riley and Andrej Ljolje. Lexical access with a statistically-derived phonetic network. In Proceedings of the European Conference on Speech Communication and Technology, pages 585-588, 1991.
- M. Weintraub, H. Murveit, M. Cohen, P. Price, J. Bernstein, G. Baldwin, and D. Bell, "Linguistic Constraints in Hidden Markov Model Based Speech Recognition," Proc. ICASSP '89, pp. 699--702, Glasgow, Scotland, May, 1989.
- Steve Young, J. Odell, and Phil Woodland. Tree-Based State-Tying for High Accuracy Acoustic Modelling. In Proceedings of ARPA Human Language Technology Workshop, Morgan Kaufmann, San Francisco, 1994.