A. Regular expressions

Let $\Sigma = \{a, b\}$. Give regular expressions describing the following languages:

1. The set of strings starting with a and ending with b.
2. The set of strings containing exactly two a’s.
3. The set of strings containing exactly two consecutive a’s.
4. The set of strings that do not contain the sequence ab.

B. Regular languages

Let $\Sigma = \{a, b\}$. Show that the following languages are not regular:

1. $\{w \in \Sigma^* : w = w^R\}$.
2. $\{ww : w \in \Sigma^*\}$.

D. Determinism

Give an example of a minimal deterministic automaton such that the reverse is not deterministic.

C. Numbers in base 2

Describe the set of numbers in base 2 represented by the strings accepted by the automaton A of Figure 1 (give a characterization and prove it).
E. Derivatives (bonus question)

Show that the transduction defined by:

\[\tau: \Sigma^* \rightarrow \Sigma^* \]

\[u \rightarrow u^{-1}L = \{v \in \Sigma^*: uv \in L\} \]

is rational if \(L \) is a regular language. To do so, you can proceed as follows.

1. Let \(A = (Q, I, F, E) \) be a deterministic automaton over the alphabet \(\Sigma \) accepting \(L \). For any \(u \in \Sigma^* \), let \(q \) be the state reached when reading \(u \) from the initial state of \(A \). Show that \(u^{-1}L \) is the set of strings labeling paths from \(q \) to \(F \).

2. Introduce a new alphabet \(\Sigma' \), that is \(\Sigma' \) contains exactly one symbol \(a' \) for each \(a \in \Sigma \). Let \(A' \) be the automaton obtained from \(A \) by adding a transition \((q, a', q)\) for each \((q, a, q') \in E\). Show that the language \(L' = L(A') \cap \Sigma^*\Sigma'^* \) is regular.

3. Let \(A'' \) be a deterministic automaton accepting \(L'' \). Use \(A'' \) to define a finite-state transducer realizing exactly the transduction \(\tau \).