

Mehryar Mohri
 Speech Recognition
 Courant Institute of Mathematical Sciences
 Homework assignment 1 – Solution

1. Give regular expressions describing the following languages:
 - (a) The set of strings of $\{a, b\}^*$ starting with a and ending with a .
 $a(a + b)^*a + a.$
 - (b) The set of strings of $\{a, b\}^*$ containing at most two consecutive a 's.
 $(\epsilon + a + aa)(b(\epsilon + a + aa))^*.$
 - (c) The set of strings of $\{a, b\}^*$ containing exactly two occurrences of ab 's.
 $b^*a^*abb^*a^*abb^*a^*.$
2. Given the alphabet $\Sigma = \{0, 1, \dots, 9\}$,
 - (a) create an automaton that accepts numbers in the range $0 – 999999$.
 See automaton of Figure 1.

Figure 1: Automaton accepting numbers in the range $0 – 999999$.

- (b) create a transducer that maps numbers (in the range $0 – 999999$) represented as strings of digits to their English read form, e.g.,

$1 \rightarrow \text{one}$
 $11 \rightarrow \text{eleven}$
 $111 \rightarrow \text{one hundred eleven}$
 $1111 \rightarrow \text{one thousand one hundred eleven}$
 $11111 \rightarrow \text{eleven thousand one hundred eleven}$

The transducer T can be constructed using rational operations. Start with a digit transducer D mapping single-digit numbers to their English expressions. Similarly, construct a transducer T_1 mapping numbers $11 - 19$ to their English expressions and T_2 mapping $10, 20, \dots, 90$ to their English form, etc.

(c) Randomly generate several numbers both as strings of digits and in their read form.

Use `fsmrandgen`.

(d) Create a weighted automaton over the real semiring associating to each sequence of digits its integer value (*hint*: here is some information about the automaton: it can be constructed with just two states and the initial state has a self-loop with weight one for each digit). You should prove that the automaton is correct.

See automaton A of figure 2.

Figure 2: Automaton accepting numbers in the range $0 - 999999$.

(e) Use the weighted automaton of the previous question and the transducer previously constructed to create a weighted automaton associating to an English sequence of the type "one hundred eleven" the number in the range $0 - 999999$ that it represents. Check the correctness of the weighted automaton by applying it to "eleven thousand two hundred fifteen".

$\text{proj}_1(A \circ T)$

3. Given the alphabet $\Sigma = \{a, b, \dots, z, \langle \text{space} \rangle\}$,

(a) create a transducer that implements the *rot13* cipher – $a \rightarrow n, b \rightarrow o, \dots, m \rightarrow z, n \rightarrow a, o \rightarrow b, \dots, z \rightarrow m$,

(b) encode the message "my secret message" (assume $\langle \text{space} \rangle \rightarrow \langle \text{space} \rangle$),

(c) decode the encoded message from above.

4. Construct a finite-state transducer that maps any string to the set of its substrings ($y \in \Sigma^*$ is a substring of $x \in \Sigma^*$ when there exists $u, v \in \Sigma^*$ such that $x = u y v$). Create a similar weighted transducer over the real semiring and explain how it could be used to count the number of occurrences of a sequence x in a text t .

See transducer of Figure 3. Simply augment it with weights all equal to one, including the final weights, for the last question.

Figure 3: Transducer mapping sequences to the set of their substrings.