
Mehryar Mohri
Speech Recognition
Courant Institute of Mathematical Sciences
Homework assignment 1 – Solution
Due: October 22, 2008

A. Finite automata, regular expressions

[40 points]

1. [5 points] Give regular expressions describing the following languages:

(a) The set of strings of {a, b}∗ starting with a and ending with b.

aΣ∗b, where Σ = {a, b}

(b) The set of strings of {a, b}∗ containing two consecutive a’s.

Σ∗aaΣ∗.

(c) The set of strings of {a, b}∗ containing exactly two a’s.

Σ′∗aΣ′∗aΣ′∗, where Σ′ = Σ − {a} = {b}.

2. [5 points] Construct the minimal deterministic automaton of Σ∗abaab

for Σ = {a, b}.

You can construct this automaton by determinizing and minimizing a non-

deterministic automaton representing Σ∗abaab (Figure 1(a)), or use failure

transitions, as discussed in class. Figure 1(b) shows the resulting automaton.

The automaton has exactly ns = |abaab|+ 1 states and ns × |Σ| transitions,

since it is complete.

Describe how you could use this automaton to search in a text for the
occurrences of abaab.

An occurrence of abaab in text t corresponds to a prefix of t ending with
abaab, that is an element of Σ∗abaab. The automaton constructed accepts
exactly all of these prefixes, and thus locates the occurrences of abaab.

Read the text with this automaton, i.e. take transitions according to the

symbols found in text. By definition of the automaton, every time a final

state is reached, you have just read abaab and thus found an occurrence of

that string.

[15 points] Let w ∈ Σ∗ be a string over the finite alphabet Σ. Show
that the minimal automaton accepting Σ∗w has exactly |w|+1 states.
What is its number of transitions?
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Figure 1: (a) Non-deterministic automaton representing Σ∗abaab. (b) Min-
imal deterministic automata representing the same regular expression.

Let p and q be the states reached by reading from the initial state of M(w)
two distinct prefixes of w. p and q cannot be equivalent since there are
distinct suffixes of w that can be read from them to reach a final state. Thus,
p 6= q and M(w) must have a distinct state associated to each prefix of w

(|w| + 1 states).

The inspection of the automaton of Figure 1(b) helps determining the defi-
nition of the minimal deterministic automaton M(w) accepting Σ∗w for an
arbitrary w ∈ Σ∗.

M(w) has exactly |w| + 1 states, each corresponding to a distinct prefix of w

read form the initial state. We can identify each state with the correspond-
ing prefix ǫ or w1 · · ·wk, for w = w1 · · ·wm. The initial state is ǫ and the
final state w. The destination state of the transition labeled with a leaving
w1 · · ·wk is the longest suffix of w1 · · ·wka that is a prefix of w. It is straight-
forward to verify that this automaton accepts exactly Σ∗w: the state reached
by reading a string x is the longest suffix of x prefix of w.

3. [15 points] Give a deterministic automaton accepting the numbers x

written in base 2 such that x ≡ 3 mod 4. How can you generalize the
result (different base, different residue than 3, or different divisor than
4)? (Hint: assign one state to each possible rest of the division of x

by 4).

Let the alphabet Σ be defined by Σ = {0, . . . , B − 1} where B is the base
considered. To represent the numbers x in that base such that x ≡ u mod v,
create a distinct state identified with each rest of the division, Q = {0, . . . , v−
1}. 0 is the initial state and u mod v the final state. The destination state
of the transition from q ∈ Q labeled with a is R(q)a mod q, where R(q)
is the representation of q in base B. It is straightforward to verify that
this automaton accepts exactly {x : x ≡ u mod v}. Figure 2 shows that
automaton for the special case where B = 2, u = 3, and v = 4.

B. Finite-State transducers, weighted automata, rational power series
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Figure 2: Finite automaton accepting numbers x written in base 2 such that
x ≡ 3 mod 4.
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Figure 3: Weighted automaton over (R,+, ·, 0, 1).

[20 points]

1. [5 points] Give a weighted regular expression (rational power series)
representing the weighted automaton of Figure 3 .

.12ab(.24ab)∗(ǫ + .2a(.1a)∗) + .15a(.24ba)∗b(.1a)∗

2. [15 points] Give a sequential transducer giving the result of the division
of x by y (y is given, x varies). What is the number of states and
transitions of that transducer. Could they be reduced? (Hint: see
exercise A.3.).

As in exercise A.3, associate a state to each rest of the division. The sequen-
tial transducer can be constructed in a straightforward way in general as in
the special case of x div 3 in base 2 shown in Figure 4.

C. Algorithms, software library

The questions in this section should be answered by using the command-line
utilities of the FSM or OpenFst library, except from the use of some simple
scripts. The answers should be justified.

[40 points]

1. Download the CMU pronunciation dictionary from

http://www.cs.nyu.edu/~mohri/asr08/cmu_shuffled_dict.txt
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Figure 4: Sequential transducer in base 2 outputting x div 3 for input x.

This contains all the lines of the original CMU dictionary but the
entries have been sorted in random order.

(a) [15 points] Create a pronunciation lexicon L1 for the first half
of the dictionary. Some words admit multiple pronunciations,
include all pronunciations. Use the closure of the pronunciation-
to-word transducer to define L1. What is the number of states
and transitions of L1?

This can be done by writing a script taking each line and returning the

textual representation of the corresponding transducer, then compiling

these transducers and taking their union, or by writing a script that

directly returns the textual representation of the union transducer. Let

l1 denote that transducer, then L1 can be obtained by taking the closure

L1 = l∗
1
.

(b) [20 points] L1 can be used to produce pronunciations for the
second half of the dictionary, possibly multiple ones. What per-
centage of the pronunciations of the second half of the dictionary
are correctly predicted using L1? To answer this question, use as
much as possible automata and transducer operations and library
utilities.

One way to proceed is to construct the composed machine M = L1◦ l−1

2

mapping pronunciations to pronunciations. It suffices then to keep
those paths of M mapping a string to itself. The input and output
labels might be shifted with respect to each other due to the presence
of ǫ-transitions. To synchronize them, you can apply a synchronization
algorithm fsmsynchronize, then remove transitions with different in-
put and output labels (this can be done by encoding the transducer
using fsmencode and intersecting it with a universal acceptor), and
then count the number of paths of the resulting transducer by using a
shortest-distance algorithm via fsmpush in the (+,×) semiring.

There are other direct and algorithmically more efficient ways of keep-

ing only the identity part of the transducer M . But, the solution just

described is entirely based on the utilities of the FSM or Openfst li-
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braries.

(c) Answer the same questions as before by using a second half of
the dictionary and a transducer L2.

(d) Based on the results you obtained, which transducer, L1 or L2,
is more accurate?

L2 turns out to be more accurate.

(e) [5 points] Use the most accurate transducer to find all possible
word parsings of ‘T UW M EH N IY P ER S AH N Z’. Give the
result as an automaton and as a list of strings in order of fewest
to greatest number of words per string.

It suffices to compose a simple automaton accepting this phonemic

sequence with L2 and project on the output to obtain the solution

automaton. Using fsmbestpath -u -n N or farprintstrings -u -n

N with a large enough parameter N returns the full list of candidate

strings.
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