Mehryar Mohri

Speech Recognition

Courant Institute of Mathematical Sciences
Homework assignment 1 — Solution
September 24, 2007

A. Genome

[35 points]
Let ¥ denote the alphabet ¥ = {A,G,T,C}.

1. [5 points] Create a transducer 7' that implements the edit distance
d based on the following insertions, deletions, and substitution costs.
For all a,b € 3,a # b,

d(a,a) =0,
d(a,e) = d(e,b) = 3, (1)
d(a,b) = 1.

A simple one-state transducer in the tropical semiring with transitions

E = {(0,2,y,d(z,9),0) : 2,y € (BU{e,a,0})* = {(e,6)}}, (2)

can represent this edit-distance, see Figure 1 (for the sake of readabil-
ity, the figures are given with the alphabet ¥ = {a,b}).

Figure 1: Edit-distance transducer T'.

2. [10 points] Using 7', find the best alignment between the strings ‘AGTCC’
and ‘GGTACC’. What is the cost of that alignment? What is the com-
plexity of the algorithm you used? Find the second best alignment.

Simply represent each string with an automaton. Use a shortest-path
algorithm, fsmbestpath, applied to XoT'oY obtained via fsmcompose,
where X and Y are the automata representing these strings.

The result of the composition is acyclic, thus a linear-time shortest-
path algorithm can be used. The total complexity is thus O(|X||T||Y]).

3. [10 points| Let A be an automaton accepting the set X = {AGTCC,GTACGC'}
and B an automaton accepting Y = {GGTACC,CAGT AC}. Using
T, A, and B, find the first and second best alignment between the
strings in sets X and Y. Give the complexity of your algorithm.

The same algorithms and operations as in the previous question can
be used here with the automata A and B replacing X and Y. The
complexity to find the best alignment is O(|A||T||B)).

4. [10 points] Modify the transducer T to take into account the following
additional transposition cost: d(ab,ba) = %. Answer the same as in

the previous question.

The transducer 1" of Figure 2 represents this new edit-distance. The
same algorithms and operations as in the previous question can be
used here with T replaced with 7".

Figure 2: Edit-distance transducer 7".

B. Counting

[35 points]
Let the alphabet be ¥ = {a,b}.

1. [10 points| Define a transducer T' mapping each input string z € X*
to the set of its factors or substrings Fact(z) = {u : x € ¥*uX*}.

It is not hard to see that the transducer T',. of Figure 3 represents
this mapping.

Figure 3: Factor transducer T',.

2. [15 points] Use T' to define a transducer U counting substrings, that
is such that U(x,u) be exactly the set of occurrences of the substring
u in z for any z,u € ¥*.
It suffices to augment all transitions and final state of T',. with weight
1 and view the result as a transducer over the (4, x) semiring, as
discussed in class (see Figure 4).

Figure 4: Counting factor transducer TJQ e

3. [10 points] Give an algorithm for finding the number of occurrences of
all substrings of length 3 in a document. What is the complexity of
your algorithm?

To do this, one can either define directly a transducer T}’ac counting
trigrams, or use composition of T}ac with an unweighted transducer
extracting trigrams (the unweighted version of T).

Figure 5: Transducer T J’c’ac counting trigrams.

C. Pronunciation dictionary

[30 points]

1. Consider the following words and their pronunciations (in ARPABET):

any eh n iy

e. iy

many m eh n iy
men mehn
per p er
persons persuhn z
sons suhnz
suns suhnz
to t uw
tomb t uw m
too t uw

two t uw

(a)

[5 points| Create a pronunciation lexicon L for these words — i.e.,
the closure of the pronunciation-to-word transducer.

It is straightforward to create this transducer using fsmclosure.

[5 points] using L, find all possible word parsings of ‘t uw m eh
niy p er s uh n z. Give the result as a graph and as a list of
strings in order of fewest to greatest number of words per string.

This can be done straightforwardly by composing L with an au-
tomaton representing this sequence, using fsmcompose.

[20 points| consider the (improbable) bigram language model that
gives the cost of word 3 being followed by word « as:

Cost(a|) = [llall = 18I,

where ||| is the number of phonemes in the pronunciation of
the word 7. Create a weighted acceptor that implements this
language model. Find the best parsing of the string in (b) when
constrained by this language model.

This can be done by first creating a transducer U mapping each
word w to |w|phone, the number of phonemes it contains, and
composing it with the language model M represented in Figure 6

and projecting on the input, using fsmcompose and fsmproject.
For the sake of readability, here M is restricted to a maximum of
3 phonemes, but the idea of the construction for more phonemes
should be clear. This automaton contains exactly one state for
each number of phonemes and a transition from state p to ¢ with
label ¢ and weight |p—g|. Since no word has zero phoneme, there
is no need to add the transitions labeled with 0.

Figure 6: Bigram language model M.

