
Mehryar Mohri
Speech Recognition
Courant Institute of Mathematical Sciences
Homework assignment 1 – Solution
September 24, 2007

A. Genome

[35 points]
Let Σ denote the alphabet Σ = {A,G, T,C}.

1. [5 points] Create a transducer T that implements the edit distance
d based on the following insertions, deletions, and substitution costs.
For all a, b ∈ Σ, a 6= b,

d(a, a) = 0,
d(a, ǫ) = d(ǫ, b) = 1

2
,

d(a, b) = 1

3
.

(1)

A simple one-state transducer in the tropical semiring with transitions

E = {(0, x, y, d(x, y), 0) : x, y ∈ (Σ ∪ {ǫ, a, b})2 − {(ǫ, ǫ)}}, (2)

can represent this edit-distance, see Figure 1 (for the sake of readabil-
ity, the figures are given with the alphabet Σ = {a, b}).

0

a:ε/.50
b:ε/.50
ε:a/.50
ε:b/.50
a:b/.33
b:a/.33
a:a/.00
b:b/.00

Figure 1: Edit-distance transducer T .

2. [10 points] Using T , find the best alignment between the strings ‘AGTCC’
and ‘GGTACC’. What is the cost of that alignment? What is the com-
plexity of the algorithm you used? Find the second best alignment.

Simply represent each string with an automaton. Use a shortest-path
algorithm, fsmbestpath, applied to X◦T ◦Y obtained via fsmcompose,
where X and Y are the automata representing these strings.

1

The result of the composition is acyclic, thus a linear-time shortest-
path algorithm can be used. The total complexity is thus O(|X||T ||Y |).

3. [10 points] Let A be an automaton accepting the set X = {AGTCC,GTACGC}
and B an automaton accepting Y = {GGTACC,CAGTAC}. Using
T , A, and B, find the first and second best alignment between the
strings in sets X and Y . Give the complexity of your algorithm.

The same algorithms and operations as in the previous question can
be used here with the automata A and B replacing X and Y . The
complexity to find the best alignment is O(|A||T ||B|).

4. [10 points] Modify the transducer T to take into account the following
additional transposition cost: d(ab, ba) = 1

4
. Answer the same as in

the previous question.

The transducer T ′ of Figure 2 represents this new edit-distance. The
same algorithms and operations as in the previous question can be
used here with T replaced with T ′.

0

a:ε/.50
b:ε/.50
ε:a/.50
ε:b/.50
a:b/.66
b:a/.66
a:a/.00
b:b/.00

1
a:b/.25

2

b:a/.25

b:a/.00

a:b/.00

Figure 2: Edit-distance transducer T ′.

B. Counting

[35 points]
Let the alphabet be Σ = {a, b}.

1. [10 points] Define a transducer T mapping each input string x ∈ Σ∗

to the set of its factors or substrings Fact(x) = {u : x ∈ Σ∗uΣ∗}.

It is not hard to see that the transducer Tfac of Figure 3 represents
this mapping.

2

0

a:ε
b:ε

1
ε:εε:ε

a:a
b:b

2
ε:εε:ε

a:ε
b:ε

Figure 3: Factor transducer Tfac.

2. [15 points] Use T to define a transducer U counting substrings, that
is such that U(x, u) be exactly the set of occurrences of the substring
u in x for any x, u ∈ Σ∗.

It suffices to augment all transitions and final state of Tfac with weight
1 and view the result as a transducer over the (+,×) semiring, as
discussed in class (see Figure 4).

0

a:ε/1
b:ε/1

1
ε:ε/1ε:ε/1

a:a/1
b:b/1

2/1
ε:ε/1ε:ε/1

a:ε/1
b:ε/1

Figure 4: Counting factor transducer T ′

fac.

3. [10 points] Give an algorithm for finding the number of occurrences of
all substrings of length 3 in a document. What is the complexity of
your algorithm?

To do this, one can either define directly a transducer T ′′

fac counting
trigrams, or use composition of T ′

fac with an unweighted transducer
extracting trigrams (the unweighted version of T ′′

fac).

0

a:ε/1
b:ε/1

1
a:a/1

b:b/1
2

a:a/1

b:b/1
3/1

a:a/1

b:b/1

a:ε/1
b:ε/1

Figure 5: Transducer T ′′

fac counting trigrams.

C. Pronunciation dictionary

[30 points]

3

1. Consider the following words and their pronunciations (in ARPABET):

any eh n iy
e. iy
many m eh n iy
men m eh n
per p er
persons p er s uh n z
sons s uh n z
suns s uh n z
to t uw
tomb t uw m
too t uw
two t uw

(a) [5 points] Create a pronunciation lexicon L for these words – i.e.,
the closure of the pronunciation-to-word transducer.

It is straightforward to create this transducer using fsmclosure.

(b) [5 points] using L, find all possible word parsings of ‘t uw m eh
n iy p er s uh n z’. Give the result as a graph and as a list of
strings in order of fewest to greatest number of words per string.

This can be done straightforwardly by composing L with an au-
tomaton representing this sequence, using fsmcompose.

(c) [20 points] consider the (improbable) bigram language model that
gives the cost of word β being followed by word α as:

Cost(α|β) = | ‖α‖ − ‖β‖ | ,

where ‖γ‖ is the number of phonemes in the pronunciation of
the word γ. Create a weighted acceptor that implements this
language model. Find the best parsing of the string in (b) when
constrained by this language model.

This can be done by first creating a transducer U mapping each
word w to |w|phone, the number of phonemes it contains, and
composing it with the language model M represented in Figure 6

4

and projecting on the input, using fsmcompose and fsmproject.
For the sake of readability, here M is restricted to a maximum of
3 phonemes, but the idea of the construction for more phonemes
should be clear. This automaton contains exactly one state for
each number of phonemes and a transition from state p to q with
label q and weight |p−q|. Since no word has zero phoneme, there
is no need to add the transitions labeled with 0.

0

1
1/1

22/2
3

3/3

1/0

2/1

3/2

1/1
2/0

3/1

1/2

2/1

2/0

Figure 6: Bigram language model M .

5

