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For all these problems, we will adopt the notation used in class.

A. Learning kernels

We consider the scenario of learning kernel.

1. Prove the equivalence of the (primal) optimization problem

min
w,µ∈∆q

1

2

p∑
k=1

‖wk‖22
µk

+ C
m∑
i=1

max

{
0, 1− yi

(
p∑

k=1

wk ·Φk(xi)

)}
.

and the (dual) problem

max
α

2α>1−

∥∥∥∥∥
α>Y>K1Yα

...
α>Y>KpYα

∥∥∥∥∥
r

subject to: 0 ≤ α ≤ C ∧α>y = 0,

where r, q ≥ 1 are conjugate numbers, 1
r + 1

q = 1.

Solution: By introducing slack variables {ξi}mi=1, we can rewrite the
primal problem in the following way:

min
w,µ∈∆q

1

2

p∑
k=1

‖wk‖22
µk

+ C
m∑
i=1

max

{
0, 1− yi

(
p∑

k=1

wk ·Φk(xi)

)}

= min
µ∈∆q

min
w

1

2

p∑
k=1

‖wk‖22
µk

+ C

m∑
i=1

max

{
0, 1− yi

(
p∑

k=1

wk ·Φk(xi)

)}

= min
µ∈∆q

min
w

ξi≥1−yi(
∑p
k=1 wk·Φk(xi)+b),ξi≥0

1

2

p∑
k=1

‖wk‖22
µk

+ C

m∑
i=1

ξi

1



Consider first the inner minimization problem. Since the inner objec-
tive is differentiable and the constraints are affine, the KKT conditions
for optimality hold as long as the constraints are feasible (which they
are). Thus, we can write the equivalent minimax problem

min
µ∈∆q

min
w,ξ

max
α,β≥0

1

2

p∑
k=1

‖wk‖22
µk

+ C
m∑
i=1

ξi

+
m∑
i=1

αi

(
1− yi

(
p∑

k=1

wk ·Φk(xi)

)
+ b− ξi

)
+

m∑
i=1

βi(−ξi),

with the associated Lagrangian

L(w, b, ξ,α,β) =
1

2

p∑
k=1

‖wk‖22
µk

+ C

m∑
i=1

ξi +

m∑
i=1

αi

(
1− yi

(
p∑

k=1

wk ·Φk(xi)

)
+ b− ξi

)

+

m∑
i=1

βi(−ξi).

At optimality, we must have

∇wkL =
wk

µk
−

m∑
i=1

αiyiΦk(xi) = 0⇒ wk = µk

m∑
i=1

αiyiΦk(xi),

∇bL =

m∑
i=1

αiyi = 0⇒ α>y,

∇ξiL = C − αi − βi = 0⇒ αi + βi = C.

Substituting in the equation for C and wk shows that at the optimal
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point, the Lagrangian can be written as

L(w, b, ξ,α,β) =
1

2

p∑
k=1

‖wk‖22
µk

+ C
m∑
i=1

ξi +
m∑
i=1

αi

(
1− yi

(
p∑

k=1

wk ·Φk(xi)

)
+ b− ξi

)

+
m∑
i=1

βi(−ξi)

=
m∑
i=1

αi −
1

2

p∑
k=1

m∑
i=1

m∑
j=1

αiαjyiyjµkΦk(xi) ·Φk(xj)

=

m∑
i=1

αi −
1

2

p∑
k=1

m∑
i=1

m∑
j=1

αiαjyiyjµkKk(xi, xj)

= α>1− 1

2
α>y>

(
p∑

k=1

µkKk

)
yα.

By rescaling the expression by 2, we can write the dual problem as:

max
0≤α≤C
α>y=0

2α>1−α>y>

(
p∑

k=1

µkKk

)
yα.

If we now add in the outermost minimization from the original prob-
lem, we must solve:

min
u∈∆q

max
0≤α≤C
α>y=0

2α>1−α>y>

(
p∑

k=1

µkKk

)
yα.

By Sion’s minimax theorem, we can interchange the min and the max
and write:

max
0≤α≤C
α>y=0

min
u∈∆q

2α>1−α>y>

(
p∑

k=1

µkKk

)
yα

= max
0≤α≤C
α>y=0

2α>1− max
u∈∆q

α>y>

(
p∑

k=1

µkKk

)
yα.

This last expression is linear in µk, so we can apply duality of lp norms
to write:

max
u∈∆q

α>y>µkKkyα =

∥∥∥∥∥
α>Y>K1Yα

...
α>Y>KpYα

∥∥∥∥∥
r

,
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where 1
q + 1

r = 1.

2. What does the problem correspond to for r = 1?

Solution: For r = 1 the conjugate variable is q = ∞. Thus, the dual
problem becomes:

max
0≤α≤C
α>y=0

min
u∈∆∞

2α>1−α>y>

(
p∑

k=1

µkKk

)
yα.

Notice that µk ≥ 0 implies that α>y>µkKkyα ≥ 0. Moreover, the
expression is maximized over µ ∈ ∆∞ when µk = 1 for every k ∈ [p].
Thus, the problem can be written in the following way:

max
0≤α≤C
α>y=0

2α>1−α>y>

(
p∑

k=1

Kk

)
yα,

which is uniform weight over all the kernels.

B. Deep boosting

Let F be the function defined over F = conv(
⋃p
k=1Hk) by

F (f) = R̂S,ρ(f) +
4

ρ

T∑
t=1

αtRm(Hkt),

for any f =
∑T

t=1 αtht ∈ F . Define the Voted Risk Minimization (VRM)
solution as the function f∗ minimizing F :

fVRM = argmin
f∈F

F (f).

Let f∗ be the element in F with the smallest generalization error:

R(f∗) = inf
f∈F

R(f).

1. Fix ρ > 0. Use the margin bound presented in class for deep bosting
to derive an upper bound on R(fVRM) − Rρ(f

∗), where Rρ(f
∗) =

E(x,y)∼D[1yf∗(x)≤ρ] is the ρ-margin loss of f∗.
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Solution: Let C = 2
ρ

√
log p
m

[
1 +

√⌈
log
[
ρ2m
log p

]⌉]
. Then, the following

holds:

Pr
[
R(fVRM)−Rρ(f∗)−

8

ρ

T∑
t=1

α∗tRm(Hkt)− 2C > ε
]

≤ Pr
[
R(fVRM)− F (fVRM)− C >

ε

2

]
+ Pr

[
F (fVRM)−Rρ(f∗)−

8

ρ

T∑
t=1

α∗tRm(Hkt)− C >
ε

2

]
≤ 2e−

mε2

2 + Pr
[
F (f∗)−Rρ(f∗)−

8

ρ

T∑
t=1

α∗tRm(Hkt)− C >
ε

2

]
= 2e−

mε2

2 + Pr
[
R̂S(f∗)−Rρ(f∗)−

4

ρ

T∑
t=1

α∗tRm(Hkt)− C >
ε

2

]
= 2e−

mε2

2 + 2e−
mε2

2 = 4e−
mε2

2 .

The proof is completed by setting the right-hand side to δ.

2. Compare this result to generalization bound proven in class for SRM.
Solution: The complexity penalty of the generalization bound for SRM

was in terms of the hypothesis set of the SRM hypothesis: Rm(Hk(h∗)).
In contrast, the complexity term in the VRM bound in the previous
question is in terms of a convex combination of the weights of the
best ensemble (measured by generalization error). Thus, if the best
ensemble does not have too much weight on complex base families,
then this term will be much smaller than the SRM term.

Moreover, the VRM bound has a term that is in O(
√

log(p)/m) as
opposed to the SRM bound which is in O(

√
log(k(h∗))/m). If we

have p hypothesis classes, then the SRM hypothesis will have an index
k(h∗) ≤ p. However, this is not a huge concern since we are taking
logarithms of these values.

Finally, the bound given in the previous question is a margin bound,
whereas the SRM bound was a standard generalization bound.

C. Structured prediction

1. Show that Φu : v 7→ eu−v upper bounds v 7→ u1v≤0 for all u ≥ 0.
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Solution: When v > 0, u1v≤0 = 0 ≤ eu−v. When v ≤ 0, u1v≤0 = u ≤
eu ≤ eu−v. ut

2. Use that to derive a new structured prediction algorithm based on the
hypothesis set

H2 = {x 7→ w ·Ψ(x, y) : w ∈ RN , ‖w‖2 ≤ Λ2},

for a feature vector Ψ.

Solution: Consider the optimization problem:

min
w∈H2

1

2
λ‖w‖2 +

m∑
i=1

max
y 6=yi

exp {L(yi, y)−w · [Ψ(xi, yi)−Ψ(xi, y)]} .

This objective function is not differentiable. Upper bound max by
sum, we have the following optimization problem:

min
w∈H2

1

2
λ‖w‖2 +

m∑
i=1

∑
y∈Y

exp {L(yi, y)−w · [Ψ(xi, yi)−Ψ(xi, y)]} .

3. Assume a bigram feature decomposition Ψ(x, y) =
∑l

k=1 φ(x, k, yk−1, yk).
Use that to give an explicit margin bound, assuming that ‖Ψ‖ ≤ r.

Solution: By Theorem 7 in http://www.cs.nyu.edu/~mohri/pub/

vcrf.pdf,

R(h) ≤ R̂add
S,ρ (h) +

4
√

2

ρ
R̂G
S (H2) + 3M

√
log 1

δ

2m
,

R(h) ≤ R̂mult
S,ρ (h) +

4
√

2M

ρ
R̂G
S (H2) + 3M

√
log 1

δ

2m
.

In addition,

R̂G
S (H2) ≤ Λ2r

m

√√√√ m∑
i=1

∑
f∈Fi

∑
y∈Yf

|Fi|.

In biagram model, Fi = {(yi,k−1, yi,k) : k ∈ [l]}, and Yf = {(y, y′) :
y, y′ ∈ Y}. Therefore,

R̂G
S (H2) ≤ Λ2r

m

√
ml2|Y|2 =

Λ2rl|Y|√
m

.

Combining this with two margin bounds gives the result.
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4. Describe in detail an efficient algorithm for the the computation of the
gradient for your algorithm.

Solution: Let

F (w) =
1

2
λ‖w‖2 +

m∑
i=1

Fi(w),

with

Fi(w) =
∑
y∈Y

exp {L(yi, y)−w · [Ψ(xi, yi)−Ψ(xi, y)]} .

We need to compute the gradient of Fi(w) efficiently.

∇Fi(w) =
∑
y∈Y

[Ψ(xi, y)−Ψ(xi, yi)] exp {L(yi, y)−w · [Ψ(xi, yi)−Ψ(xi, y)]}

= exp{−w ·Ψ(xi, yi)}

∑
y∈Y

Ψ(xi, y) exp{L(yi, y) + w ·Ψ(xi, y)}

︸ ︷︷ ︸
Ai

−Ψ(xi, yi) exp{−w ·Ψ(xi, yi)}

∑
y∈Y

exp{L(yi, y) + w ·Ψ(xi, y)}

︸ ︷︷ ︸
Bi

Note that we can easily compute exp{−w·Ψ(xi, yi)} and Ψ(xi, yi) exp{−w·
Ψ(xi, yi)}. Now the problem reduces to computing Ai and Bi effi-
ciently.

Rewrite Ai and Bi:

Ai =
∑
y∈Y

exp{L(yi, y) + w ·Ψ(xi, y)}

(
l∑

k=1

φ(xi, k, yk−1, yk)

)

=
l∑

k=1

∑
(s,t)∈∆2

 ∑
yk−1=s
yk=t

exp{L(yi, y) + w ·Ψ(xi, y)}

φ(xk, k, s, t)

7



Bi =
∑
y∈Y

exp{L(yi, y) + w ·Ψ(xi, y)}

=
1

l

l∑
k=1

∑
(s,t)∈∆2

 ∑
yk−1=s
yk=t

exp{L(yi, y) + w ·Ψ(xi, y)}


Therefore the problem further reduces to efficiently computing

Ci(k, s, t) =
∑

yk−1=s
yk=t

exp{L(yi, y) + w ·Ψ(xi, y)}

for any k ∈ [l] and (s, t) ∈ ∆2.

In what follows, we assume the loss function is decomposable in the
same way as bigram feature. That is, for any y, y′ ∈ Y,

L(y, y′) =
l∑

k=1

Lk(yk−1, yk, y
′
k−1, y

′
k).

Rewrite Ci(k, s, t) with decomposed loss:

Ci(k, s, t) =
∑

yk−1=s
yk=t

{
k−1∏
m=1

exp{Lm(yi,m−1, yi,m, ym−1, ym) + w · φ(xi,m, ym−1, ym)}×

exp {Lk(yi,k−1, yi,k, s, t) + w · φ(xi, k, s, t)}×
l∏

m=k+1

exp {Lm(yi,m−1, yi,m, ym−1, ym) + w · φ(xi,m, ym−1, ym)}

}
.

Now we see Ci(k, s, t) is the sum of the weights of all paths going
through a given transition (s, t). We can use the flow computation
introduced in class to efficiently compute it. Once Ci(k, s, t)s are com-
puted, we can easily get Ai, Bi, and finally ∇F (w).

Bonus: Multi-Armed Bandit

Consider the standard multi-armed bandit problem with N arms, but as-
sume now that the learner receives extra information as follows. Assume
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that there is a function O : {1, 2, . . . , N} → 2{1,2,...,N} (where 2A indicates
the power set of A) such that at any round, pulling arm i results in knowl-
edge of the rewards of all arms in O(i). Assume further that i ∈ O(i)
(i.e. pulling an arm always results in knowledge of that arm’s reward) and
i ∈ O(j)⇔ j ∈ O(i).

1. Explain how the function O induces an undirected graph G = (V,E)
over the arms of the game.

2. Recall that a clique C of a graph is a subset of its vertices such that
every vertex is connected to every other vertex in this subset. More-
over, a clique covering of a graph is a set of cliques such that their
union is equal to the entire set of vertices in the graph. Let C be a
clique covering of the graph described in the previous question, so that
∪C∈CC = V . Design an algorithm that achieves the following regret
bound:

Tµ∗ −
T∑
t=1

µIt ≤ O

(
inf
C

{∑
C∈C

maxi∈C ∆i log(T )

minj∈C ∆2
j

})
.

3. Explain how this regret bound compares to results for the standard
MAB problem and for the full-information setting.

Solution: See http://www.auai.org/uai2012/papers/236.pdf.
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