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A. Exponentially Weighted algorithm

The regret bound of the EW algorithm given in class does not match that
of the Halving algorithm in the case where the loss of the best expert in
hindsight is zero. In this problem, we will give a more favorable bound for
such cases. We will adopt the same assumptions and use the same notation
as for the regret bound theorem given in class for EW.

1. Fix η > 0. Show that for any X ∈ [0, 1], e−ηX ≤ X(e−η− 1) + 1 (hint :
use convexity of the exponential function). Use that to show that for
a random variable X taking values in [0, 1],

log E[e−ηX ] ≤ (e−η − 1) E[X]. (1)

2. Prove that the cumulative loss of EW can be bounded as follows:

T∑
t=1

L(ŷt, yt) ≤
ηL∗T

1− e−η
+

logN

1− e−η
, (2)

where L∗T is the loss of the best expert in hindsight (hint : use inequal-
ity (1) instead of Hoeffding’s inequality in the proof given in class).
Compare this result with the Halving bound when L∗T = 0 and η large.

3. Bonus question: Prove the inequality η
1−e−η ≤ 1+η. Use this to derive

an upper bound and choose η to minimize that bound.

C. Correlated equilibria

Consider the following version of the Rock-Paper-Scissors where players are
both penalized if they play the same action.

R P S

R (-1, -1) (0, 1) (1, 0)
P (1, 0) (-1, -1) (0, 1)
S (0, 1) (1, 0) (-1, -1)
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1. Show that this game admits a unique mixed Nash equilibrium with
non-zero probability for all actions. What is the expected payoff for
the players?

2. Show that the game admits a correlated equilibrium with expected
payoff 1

2 .

D. Mirror Descent

In class we presented a general guarantee for Mirror Descent. We will adopt
the assumptions of that theorem as well as the notation. Additionally, as-
sume that the functions ft are β-strongly convex with respect to Φ, that
is

ft(w
′) ≥ ft(w) + δft(w) · (w′ −w) +

β

2
B(w′ ‖ w),

for all w′,w ∈ RN , with β > 0.

1. Suppose we use Mirror Descent with a time-varying learning rate
ηt+1 = 2

βt . Prove a logarithmic bound on the regret of Mirror De-
scent (hint : use proof for strongly convex losses given for PSGD). Your
bound should be explicit and you should carefully justify all steps.

2. Show that your bound coincides with the one presented for PSGD in
class in the case of strongly-convex losses.

B. Time-varying parameter

In this problem, we consider the use of the EW algorithm with no prior
knowledge of the horizon T and using, instead of a fixed parameter η, a
time-varying parameter ηt > 0, with ηt ≤ ηt−1 for all t ∈ [1, T ]. We define
w0,i = 1 for all i ∈ [1, N ]. At iteration t ≥ 1, prediction is made using the
weights wt−1,i via

ŷt =

∑N
i=1wt−1,i yt,i∑N
i=1wt−1,i

. (3)

The weight of expert i is then updated as follows:

wt,i = e−ηtLt,i with Lt,i =

t∑
s=1

L(ŷs,i , ys). (4)
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For any t, we also define Lt,∗ = mini∈[1,N ] Lt,i and wt,∗ = e−ηtLt,∗ . We define

Wt as the sum of the weights at time t: Wt =
∑N

i=1wt,i. Similarly, we define

w′t,i = e−ηt−1Lt,i , W ′t =
∑N

i=1w
′
t,i, and w′t,∗ = e−ηt−1Lt,∗ .

For any t ∈ [0, T ], define the potential

Φt =
1

ηt
log

Wt

wt,∗
. (5)

1. Show that the following equality holds for all t ∈ [1, T ]:

Φt − Φt−1 =
1

ηt

[
log

Wt

wt,∗
− log

W ′t
w′t,∗

]
︸ ︷︷ ︸

A

+

[
1

ηt
− 1

ηt−1

]
log

W ′t
w′t,∗︸ ︷︷ ︸

B

+
1

ηt−1

[
log

W ′t
w′t,∗
− log

Wt−1
wt−1,∗

]
︸ ︷︷ ︸

C

. (6)

2. Use the inequality:

log

∑N
i=1 e

−ηt[Lt,i−Lt,∗]∑N
i=1 e

−ηt−1[Lt,i−Lt,∗]
≤ ηt−1 − ηt

ηt−1
logN, (7)

to show the following bound on A:

A ≤
[

1

ηt
− 1

ηt−1

]
logN. (8)

Bonus question: prove inequality (7) using Jensen’s inequality and the

convexity of the function Ψ: η 7→ log
[∑n

i=1 e
−η[Lt,i−Lt,∗]

]
.

3. Show that B can be bounded as follows:

B ≤
[

1

ηt
− 1

ηt−1

]
logN. (9)

4. Use a technique similar to that of the proof of EW given in class to
show that the third term can be bounded as follows:

C ≤ Lt,∗ − Lt−1,∗ − L(ŷt, yt) +
ηt−1

8
. (10)
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5. Use the upper bounds on A, B, and C to prove the following upper
bound on the regret of EW using a time-varying parameter:

RT ≤
1

8

T∑
t=1

ηt−1 +
2

ηT
logN − 1

η0
logN. (11)

6. Assume now that for any t ∈ [0, T ], we choose ηt =
√

α logN
t+1 , where

α > 0 is a parameter we will select. Show that the following upper
bound holds:

RT ≤
1

4

√
αT logN + 2

√
(T + 1) logN

α
−
√

logN

α
.

7. Prove the following regret bound using α = 8:

RT ≤
√

2T logN +

√
logN

8
.

8. Bonus question: Derive a regret bound in terms of LT,∗ by choosing

ηt =
√

α logN
Lt,∗+1 .
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