Fast Global Alignment Kernels

Time Series

05.05.2015
Rodrigo Frassetto Nogueira
Thanos Papadopoulos
Agenda

- Motivation
- Dynamic Time Warping (DTW)
- Global Alignment (GA) Kernels
- Experiments
- Conclusion
Agenda

• Motivation
 • Time series Introduction
 • Problem Formulation
 • Dynamic Time Warping (DTW)
 • Global Alignment (GA) Kernels
 • Experiments
 • Conclusion
Example #1

• Stock Price Forecasting

Example #2

- Caltrans Performance Measurement System (PeMS)
 - occupancy rate in San Francisco bay area freeways - [0, 1]
 - 963 sensors (different car lanes)
 - data every 10'
 - time series per day: dimension - 963, length - 6*24=144
Example #3

- Speech signals
Agenda

• Motivation
 • Time series Introduction

• Problem Formulation
 • Dynamic Time Warping (DTW)
 • Global Alignment (GA) Kernels
 • Experiments
 • Conclusion
Problem Formulation

• Goal: Find adequate kernels for time series
 • handle variable length
 • be positive definite
 • low computational cost
How we start?

Similarity Measure: \(K(x, y) = \langle \phi(x), \phi(y) \rangle \)
Agenda

- Motivation

- **Dynamic Time Warping (DTW)**
 - Global Alignment (GA) Kernels
 - Experiments
 - Conclusion
Dynamic Time Warping

- pairwise comparisons?

- alignment:
 associate each element of sequence X to one or more elements of sequence Y and vice-versa
DTW Cost Matrix
Optimal Alignment
DTW definition

- warping functions: $\pi_1(i), \pi_2(j)$
DTW definition

- warping functions: \(\pi_1(i), \pi_2(j) \)
- moves: \(\rightarrow, \uparrow, \nearrow \)
DTW definition

• warping functions: $\pi_1(i), \pi_2(j)$

• moves: $\rightarrow, \uparrow, \nearrow$

• cost per alignment π:

$$D_{x,y}(\pi) = \sum_{i=1}^{\mid\pi\mid} \varphi(x_{\pi_1(i)}, y_{\pi_2(i)})$$

• optimal alignment:

$$DTW(x, y) = \min_{\pi \in A(n,m)} D_{x,y}(\pi)$$
Why not DTW?

- not PDS
- high computational cost, $O(dnm)$
Agenda

- Motivation
- Dynamic Time Warping (DTW)
- **Global Alignment (GA) Kernels**
 - **Definition**
 - Diagonal Dominance
 - Positive Definiteness
 - Computational Cost
- Experiments
- Conclusion
GA kernels

- soft maximum motivation, \(\log(\sum_i e^{x_i}) : \)

\[
k_{GA} = \sum_{\pi \in A(n,m)} e^{-D_{x,y}(\pi)} = \sum_{\pi \in A(n,m)} e^{-\sum_{i=1}^{||\pi||} \varphi(x_{\pi_1(i)}, y_{\pi_2(i)})}
\]

- by defining \(\kappa = e^{-\varphi} : \)

\[
k_{GA} = \sum_{\pi \in A(n,m)} \prod_{i=1}^{||\pi||} \kappa(x_{\pi_1(i)}, y_{\pi_2(i)})
\]

- whole spectrum of costs/alignments
Agenda

- Motivation
- Dynamic Time Warping (DTW)
- **Global Alignment (GA) Kernels**
 - Definition
 - **Diagonal Dominance**
 - Positive Definiteness
 - Computational Cost
- Experiments
- Conclusion
Diagonal Dominance

• off-diagonal entries far smaller than trace (Gram matrix)

• Solution:

\[\kappa = e^{-\lambda \varphi(x_{\pi_1(i)}, y_{\pi_2(i)})}, \quad \lambda > 0 \]
Behavior in the limits of λ

Let $\{X_1, X_2, ..., X_p\}$ be a sample of time series

$$k_{GA}(x, y) = \sum_{\pi \in A(n,m)} \prod_{i=1}^{\left|\pi\right|} e^{-\lambda \cdot \varphi(x_{\pi_1(i)}, y_{\pi_2(i)})}$$

1. All samples have same length n

- When $\lambda \to \infty$, $k_{GA} \to I_p$
- When $\lambda \to 0$, $k_{GA} \to D(n, n) \cdot 1_{p,p}$
Delannoy numbers

\[D(n, m) = D(n, m - 1) + D(n - 1, m) + D(n - 1, m - 1) \]
Behavior in the limits of λ

- Let $\{X_1, X_2, ..., X_p\}$ be a sample of time series

$$k_{GA}(x, y) = \sum_{\pi \in A(n, m)} \prod_{i=1}^{\vert \pi \vert} e^{-\lambda \cdot \varphi(x_{\pi_1(i)}, y_{\pi_2(i)})}$$

2. Samples have different lengths

- When $\lambda \to \infty$, $k_{GA} \to I_p$

- When $\lambda \to 0$, $k_{GA}(X_i, X_j) \to D(|X_i|, |X_j|)$
Diagonal Dominance

• problem arises when length varies and λ tends to 0

• n sequences with length 1 to n

• Empirically: for $\lambda \approx 0 \Rightarrow \frac{1}{2} \leq \frac{n}{m} \leq 2$
Agenda

• Motivation
• Dynamic Time Warping (DTW)

• **Global Alignment (GA) Kernels**
 • Definition
 • Diagonal Dominance
 • **Positive Definiteness**
 • Computational Cost

• Experiments
• Conclusion
Positive Definiteness

- if κ is p.d. what about k_{GA}?

- mapping kernels: $k(x, y) = \sum_{(x_i, y_i) \in M(x, y)} \kappa_l(x_i, y_i)$

κ is a local kernel on substructures of x, y

M is a mapping set
GA kernels as Mapping kernels

• if κ is p.d. what about k_{GA}?

• For GA kernels: $\kappa_l(x_{\pi_1}, y_{\pi_2}) = \prod_{i=1}^{\lvert \pi \rvert} \kappa(x_{\pi_1(i)}, y_{\pi_2(i)})$

$M_{GA}(x, y) = \{(x_{\pi_1}, y_{\pi_2}) \mid \pi = (\pi_1, \pi_2) \in A(n, m)\}$

• Theorem 1: k_{GA} is p.d. if and only if M is transitive

$(x_i, y_i) \in M(x, y), (y_i, z_i) \in M(y, z) \Rightarrow (x_i, z_i) \in M(x, z)$

• Lemma 1: M_{GA} is not transitive
Constraints on κ

- **Theorem 2**: If κ is p.d. and $\frac{\kappa}{1 + \kappa}$ is p.d., k_{GA} is p.d.

- **Geometric Divisibility (g.d.)**:

 - mapping $\tau(x) = \frac{x}{1 + x}$: $R_+ \rightarrow [0, 1)$

 - inverse mapping $\tau^{-1}(x) = \frac{x}{1 - x}$: $[0, 1) \rightarrow R_+$

 - f is g.d. if τf is p.d.

- **Lemma 2**: If κ is g.d. then k_{GA} is p.d.
Constraints on \(\kappa \)

- Infinite divisibility (i.d.): \(\kappa \) is i.d. iff \(-\log(\kappa)\) is n.d.

- Lemma 3: For any i.d. kernel \(\kappa \) s.t. \(0 < \kappa < 1 \), \(\tau^{-1} \kappa \) is g.d. and i.d.

- how to construct a local kernel?

- Example: Gaussian kernel, \(\kappa_\sigma \), is i.d., thus \(\tau^{-1}(\frac{\kappa_\sigma}{2}) \) is i.d. and g.d.

Also, \(\varphi = -\log(\tau^{-1}(\frac{\kappa_\sigma}{2})) \) is n.d. and we set \(\kappa = e^{-\lambda \varphi} \)
Agenda

- Motivation
- Dynamic Time Warping (DTW)
- **Global Alignment (GA) Kernels**
 - Definition
 - Diagonal Dominance
 - Positive Definiteness
 - **Computational Cost**
 - Experiments
 - Conclusion
Time Complexity

- DTW time complexity: O(dnm)

What to do?

- Ignore “bad” alignments - keep alignments close to the diagonal:

\[
D_{x,y}^\gamma (\pi) = \sum_{i=1}^{\left|\pi\right|} \gamma_{\pi_1(i),\pi_2(i)} \cdot \varphi(x_{\pi_1(i)}, y_{\pi_2(i)})
\]

\[
\gamma_{i,j} = \begin{cases}
1, & |i-j| < T \\
\infty, & |i-j| \geq T
\end{cases}
\]
\[M_{i,j} = \kappa(x_i, y_j)(M_{i-1,j-1} + M_{i,j-1} + M_{i-1,j}) \]

\[(2T - 1) \cdot \min(n, m) - T(T - 1)/2 \Rightarrow O(2T\min(n, m))\]
Triangular GA Kernels

- if κ is infinite divisible, and ω is a p.d. kernel in \mathbb{N}, then $\tau^{-1}(\omega \otimes \kappa)$ as a local kernel gives a p.d. GA kernel

- common choice for ω:

$$\omega(i, j) = \left(1 - \frac{|i - j|}{T}\right)_+$$

- Example: $\tau^{-1}(\omega \otimes \frac{1}{2}\kappa_\sigma)(i, x; j, y) = \frac{\omega(i, j)\kappa(x, y)}{2 - \omega(i, j)\kappa(x, y)}$
Agenda

• Motivation
• Dynamic Time Warping (DTW)
• Global Alignment (GA) Kernels

• Experiments

• Conclusion
Kernels to compare

- **DTW:** \(k_{DTW} = e^{-\frac{1}{t}DTW} \)

- **DTW SC:** \(k_{SC} = e^{-\frac{1}{t}DTW_{SC}} \)

\[
DTW_{SC}(x, y) = \min_{\pi \in A(n,m)} D^\gamma_{x,y}(\pi)
\]

- **DTAK:** \((k_{DTAK}(x, y))^{\frac{1}{t}} \)

\[
k_{DTAK}(x, y) = \max_{\pi \in A(n,m)} \sum_{i=1}^{|\pi|} \kappa_\sigma(x_{\pi_1(i)}, y_{\pi_2(i)})
\]

- **GA:** \(\kappa = e^{-log\left(\tau^{-1}\left(\frac{1}{2}\kappa_\sigma\right)\right)} \)

- **TGA:** \(\kappa = \tau^{-1}(\omega \otimes \frac{1}{2}\kappa_\sigma) \)
Datasets

<table>
<thead>
<tr>
<th>Database</th>
<th>d</th>
<th>n range, med(n)</th>
<th>classes</th>
<th># points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japanese Vowels</td>
<td>12</td>
<td>7-29, 15</td>
<td>9</td>
<td>640</td>
</tr>
<tr>
<td>Libras</td>
<td>2</td>
<td>45</td>
<td>15</td>
<td>945</td>
</tr>
<tr>
<td>Handwritten Characters</td>
<td>3</td>
<td>60-182, 122</td>
<td>20</td>
<td>2858</td>
</tr>
<tr>
<td>AUSLAN</td>
<td>22</td>
<td>45-136, 55</td>
<td>95</td>
<td>2465</td>
</tr>
<tr>
<td>PEMS</td>
<td>963</td>
<td>144</td>
<td>7</td>
<td>440</td>
</tr>
</tbody>
</table>
Classification error rates

Mean/StD of test error rates (%)

AUSLAN LIBRAS PEMS

DTW DTW SC DTAK GA TGA

JV HW
Performance and speed
Agenda

• Motivation
• Dynamic Time Warping (DTW)
• Global Alignment (GA) Kernels
• Experiments

• **Conclusion**
Conclusion

$O(T \cdot \min(n, m))$

Fast Global Alignment Kernels

wide spectrum of alignments

DTW based

PDS variable size