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Questions

∙ DA under the covariate shift assumption can succeed if we are
given/can estimate the weight ratios. But what happens if we are
not given these ratios and some (all?) of the points in the source
sample are not found in the target sample?

∙ Can we find satisfying error guarantees without prior knowledge
about the source but strong prior knowledge about the target
task?

∙ Can we trade the ’expensive’ labeled examples from the source
distribution for unlabeled target-generated data.
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Assumptions

∙ Covariate shift

∙ Pointwise density ratio between source and target distributions is
bounded below by 0.5

∙ Realizable hypothesis class with smallest possible VC dimension
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Definitions I

Solvability:

Let W be a class of triples (PS,PT, l) of source and target
distributions over some domain X and a labeling function l.

The DA learner A (ϵ, δ,m,n)-solves DA for the class W , if for
∀ triples (PS,PT, l) ∈ W ,
labeled sample S of size m i.i.d. from PS,
unlabeled sample T of size n from PT ,

with probability at least 1− δ A outputs a function h with ErrTl (h) ≤ ϵ.
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Definitions II

dA distance

dH△H distance: dH△H(PS,PT) = supA∈H△H |PT(A)− PS(A)|

where H△H = {h1△h2|h1,h2 ∈ H},

h1△h2 = {x ∈ X |h1(x) ̸= h2(x)}
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Definitions III

Weight Ratio: For B ⊆ 2X , source and target distributions PS and PT

CB(PS,PT) = inf
b∈B,PT(b)̸=0

PS(b)
PT(b)

We use C(PS,PT) if B is the collection of all sets that are PS and PT
-measurable.

We will bound the wight ratio by C(PS,PT) ≥ 1/2.
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Theorem I

Theorem 1: Let X be a finite domain, and ϵ+ δ < 1
2 .

No algorithm can (ϵ, δ, s, t)-solve the DA problem for the class W of
triples (PS,PT, l) with

∙ C(PS,PT) ≥ 1/2
∙ dH1,0△H1,0(PS,PT) = 0
∙ optlT(H1,0) = 0

if s+ t <
√

(1− 2(ϵ+ δ))|X | − 2.

We prove this theorem by reducing the related Left/Right Problem
(Kelly et al. 2010) to Domain Adaptation under specific assumptions.
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Left/Right Problem

The Left/Right problem: Given three finite samples, L, R and M of
points from some domain set X , with

∙ L i.i.d. sample from some distribution P,
∙ R an i.i.d. sample from some distribution Q over X ,

If M is an i.i.d. sample generated by one of these two probability
distributions, can we tell which one it is?
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Left/Right Problem II

An algorithm (δ, l, r,m)-solves the L/R problem if, given samples L, R
and M of sizes l, r and m respectively, it gives the correct answer with
probability at least 1− δ.
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Left/Right Problem III

More formally

Let W uni
n = {(UA,UB,UC) : A ∪ B = {1, ...n},A ∩ B = ⊘, |A| = |B|, and

C = A or C = B}, where UY denotes the uniform distribution over the
set Y.

Lemma 1: For any given sample sizes l for L, r for R and m for M and
any 0 < γ < 1/2, if k = max{l, r}+m, then for n > (k+ 1)2/(1− 2γ)
no algorithm has probability of success greater than 1− γ over the
class W uni

n . .
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Left/Right Problem IV

Idea for Proof (Batu et al. 2010): The L/R problem is permutation
invariant (doesn’t depend on permutations of X). Find large enough
n that with high probability no element is repeated more than once
across the three samples.

Proposition 1: Let X be a finite domain of size n. For every 0 < δ < 1,
with probability > (1− δ), an i.i.d. sample of size at most

√
δn− δ

uniformly drawn over X , contains no repeated elements.
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Left/Right Problem V

Permutation invariance

For multi-sets L, R, M of size ≤ n, from distributions P or Q over some
domain X the fingerprint F is defined as {Ci,j,k|1 ≤ i, j, k ≤ n}, where
Ci,j,k is the number of elements of X , that appear exactly i times in L,
j times in R and k times in M.

Proposition 2: If there exists an algorithm A for testing some
permutation-invariant property of distributions, then there exists an
algorithm for that same task that gets as input only the fingerprints
of the samples that A takes and enjoys the same guarantee on its
probability of success.
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Left/Right Problem VI

Proof of Lemma 1 Let δ = 1− 2γ. Then with probability > (1− δ) the
input to the Left/Right problem over W uni

n has no repeated
elements, and the fingerprint F has

C1,0,0 = l, C0,1,0 = r, C0,0,1 = m, and Ci,j,k = 0 for all other i, j and k,
independently of M coming from UA or UB.

Let A be some algorithm, p = P(A outputs UA |F)

If p ≥ 0.5, then P(A errs) > (1− δ)/2 for all triples where C is equal to
B.

If p ≤ 0.5, then P(A errs) > (1− δ)/2 on all triples where C is equal to
A.

But (1− δ)/2 = γ,thus, no algorithm can (γ, l, r,m)-solve the
Left/Right problem for the class W uni

n .
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Left/Right Problem to DA

How do we get from DA to the L/R problem?

For n, let W DA
n be the class of triples (PS,PT, l), where

∙ X is a finite set of size n,
∙ PS ∼ U(X )

∙ PT is uniform over some subset U of X of size n/2
∙ l(x) = 1 for x ∈ U and l(x) = 0 for x ∈ X \U.

Notably C(PS,PT) = 1/2.

Lemma 2. For n ∈ N and an algorithm A that can (ϵ, δ, s, t)-solve DA
for W DA

n given that the Target is realizable by H1,0, we can construct
an algorithm that (ϵ+ δ, s, s, t+ 1)-solves the Left/Right problem on
W uni
n .
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Left/Right Problem to DA II

Proof

Given sample L = {l1, l2, ..., ls} and R = {r1, r2, ..., rs}, sample M of size
t+ 1 for L/R in W uni

n

Let T = M\{p},p ∈ M chosen uniformly at random.

Construct S from L× {0} ∪ R× {1} by successively flipping an
unbiased coin, and choosing the next element from L× {0} ∪ R× {1}
accordingly.

Then PT of this DA problem has marginal either UA or UB and the
labeling function of this Domain Adaptation instance is l(x) = 0 if
x ∈ A and l(x) = 1 if x ∈ B.

If A outputs h on input S and T, then Left/Right problem outputs UA
if h(p) = 0, UB if h(p) = 1, and (ϵ+ δ, s, s, t+ 1)-solves the Left/Right
problem. 14



Theorem 1 concluded

Thus if an algorithm A that can (ϵ, δ, s, t)-solve DA by Lemma 1 we
have |X| ≤ (s+ (t+ 1) + 1)2/(1− 2(ϵ+ δ)) , thus

s+ t ≥
√
(1− 2(ϵ+ δ))|X | − 2 completing the proof of Theorem 1.

Corollary:

Theorem 2:

Let X = [0, 1]d, ϵ, δ > 0 s.t ϵ+ δ < 1/2.

Let λ > 1 and let W be the set of triples (PS,PT, l) of distributions
over X , with covariance shift and realizability as before, and
λ-Lipschitz labeling function l.

Then no DA-learner can (s, t, ϵ, δ)-solve the DA-problem for the class
W unless s+ t ≥

√
(λ+ 1)d(1− 2(ϵ+ δ))− 2.
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Theorem 2

Proof:

Let G ⊆ X be the points of a grid in [0, 1]d with distance 1/λ. Then
|G| = (λ+ 1)d, and any labeling function l : G→ {0, 1} is λ-Lipschitz.

As G is finite, the bound follows from Theorem 1.
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Algorithm

Algorithm A Input An i.i.d. sample S from PS labeled by l, an
unlabeled i.i.d. sample T from PT, and a margin parameter γ.

Step 1 Partition the domain [0, 1]d into a collection B of boxes
(axis-aligned rectangles) with sidelength (γ/

√
d).

Step 2 Obtain sample S′by removing every point in S, which is sitting
in a box that is not hit by T.

Step 3 Output an ERM classifier from H for the sample S′
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