A Random Walk_Down the Genomes:
A case study of DNA evolution in Valis

Y1 ZHOU%?, SALVATORE PAXIA?,
ARCHISMAN RUDRA?® AND BUD MISHRA%¢

a. DEPARTMENTS COMPUTER SCIENCE & MATHEMATICS,
COURANT INSTITUTE OF MATHEMATICAL SCIENCES, NYU
b. DEPARTMENT OF BiorLoGgy, NYU
c. WATSON SCHOOL OF BIOLOGICAL SCIENCES,

CoLD SPRING HARBOR LABORATORY

1 Introduction

DNA molecules are chemically inert and physically inflexible. However, chromosomes and its discrete
constituent base pair sequences have come to be seen as the repository of the functional blueprints
of all of life. The information that is held in the genome and carefully transcribed and translated
to govern metabolic and regulatory pathways has become the key focus of biological studies. Thus,
while all of biology is built on the substrate of chemistry and physics, one now believes that a better
understanding of biology will come through information theoretic studies of genomes. As a result, the
key mathematical approaches that will play increasingly important roles in the “new biology” are ideas
from systems sciences: dynamical systems, control theory, game theory, information and decision theory
and mathematical logic.

Just understanding the evolutionary processes that a genome is subjected to could give interesting
clues to how biology has come to look the way it does. There are many processes involved and some
are not very well understood: point mutation, recombination, gene conversion, replication error (e.g.,
polymerase slippage), DNA repair, translocation,imprinting, horizontal transfer, etc.

In order to understand these processes, one needs to be able to analyze the vast amounts of genomic
data that continue to become available. The challenges, intrigues and excitements that these “codes
of life” have come to symbolize, in turn, have catapulted the embryonic field of bioinformatics to
the forefront. Bioinformatics currently represents a hastily assembled set of tools to “contig” the
sequences, organize the sequence databases, annotate and search these databases and occasionally
generate a few computationally or statistically intriguing problems for the sister fields of mathematical
and computational biology, etc. Nevertheless, a fully matured field of bioinformatics is likely to go well
beyond these immediate questions to create tools to reason, ponder, question, infer, suggest experiments
and pose examples and counter-examples dealing with the ensemble of available biological facts.

Faced with these issues, we have begun to create a programming language and a computational
environment, dubbed Valis. By its design, Valis aims at solving the immediate problems of genomics
and proteomics that the biological community currently faces, but still leaves enormous room to co-
evolve as the field matures.

2 Valis: DNA Talk

Valis envisions a modern biology, driven by large scale processing of heterogeneous data coming from
diverse sources. This could be anything from a Genbank sequence to the result of some microarray
experiment. The current interfaces which let one access these different sources vary widely, so that a
biologist needs to be an expert in very different areas of computer science: databases, networking, lan-
guages etc. Furthermore, at present, the algorithms used to extract biologically significant information



tend to be developed in an ad hoc manner. These current approaches lead to very little code sharing
between the data analysis algorithms with the concomitant increase in code complexity.

Instead of developing each tool ab initio, our bioinformatic system Valis defines low level building
blocks and uniform APIs which let one use these from high level scripting languages. This enables
biologists to write very simple scripts to perform fairly involved bioinformatic processing in a flexible
fashion. As an example we use the Valis system to investigate the consequences of various cellular
events on genomic DNA sequence evolution.

How genomes evolve is a very important problem in biology. It will lead to better understanding of
the mechanisms of cancer development, and more accurate analyses of phylogeny data. We approach
the study of sequence evolution by looking at statistical properties of the DNA sequences. As we will
describe in a later section, we can measure the long-range correlation properties of DNA sequences and
use this information to hypothesize the roles of various known cellular events and to seek unknown
cellular events needed to explain the structure of the genomes. For instance, from the estimation of a
few of the genomic statistical parameters, one may be able to distinguish between different models of
DNA evolution, operating concomitantly and independently in coding and non-coding regions. Also,
we will come back to the detailed model and how these models are represented in Valis.

2.1 Current Implementation

Valis is a language independent environment to prototype bioinformatics applications. It provides a set
of libraries to read the input data stored in relational databases or in standard file formats, efficient
implementations of algorithms useful to genomics and numerous visualization tools.

A Valis script can be written in any supported language: JScript, VBScript, Python, PERL and
SETL. While the syntax of the scripts written in these languages varies wildly, they all see the same
Valis class hierarchy. For example, once a user learns that a Valis Sequence Object has a method called
Input that will read the sequence from a file, the user can subsequently use this same primitive from
all the different languages.

At present, the data input objects can read into Valis sequences, maps, tables, annotations, microar-
ray data etc. Unfortunately, in the genomics community there has been a proliferation of incompatible
and proprietary file formats. By providing these objects, we can use input data from disparate sources,
because once the data is loaded into Valis, it is presented in an uniform way to the computational layer.

The main strength of Valis comes from the fact that it provides extensive computational facilities to
process genomics data. The current Valis environment provides numerical algorithms, string processing
routines, alignment tools, sequence and map assembly facilities and statistical analysis algorithms. Of
course one can always prototype the algorithm in any supported scripting language, but Valis derives
its power by providing efficient implementations of the basic building blocks, enabling a biologist to
process the data in quasi real-time. The system can be extended without recompiling it. New native
libraries can be dynamically loaded into Valis.

Although the system is designed to be used in workstations, we can run the computation intensive
processes on Beowulf computing servers. The current implementation of Valis runs on one such cluster,
which is planned to be further enhanced.

Once the processing is completed, it is very important to be able to quickly visualize the results. For
this reason Valis provides numerous visualization tools that allow a user to quickly display sequences,
maps, microarray data, tables, graphs and annotations. These widget can be customized from the
scripts.

An example of a Valis script used for analyzing a human chromosome is shown below. In this
example, written in JScript (see Appendix II for the same example in PERL), we load chromosome 22
into Valis from a fasta file. Next, we annotate the sequence with data from a “GoldenPath” mirror.
Finally, we run a word (“mer”) frequency analysis algorithm to find the probability distribution of all
words of length k (“k-mers”) within that chromosome. (See Figure. 6.)

The script starts by selecting the language and clearing the output window:



#language JSCRIPT
Valis.Clear();

Now we can create a SQL data access object, and connect to one of our databases:

sql = Valis.CreateObject("Sql");
sql.Connect ("DSN = mysql; UID = someuser; PWD = somepwd");

This section will create a DNA sequence (DNASeq, a string of A, T', C and G) object called seq and
input its data from a fasta file. Most of the complex objects in Valis have a Display method. The
sequence is here displayed with a sequence viewer, when the seq.Display() method is invoked.

seq = Valis.CreateObject ("DNASeq") ;

seq. Input ("C:\\GoldenPath\\chr22.fasta");
seq.SelectSequence(1);

seq.Display();

Next we run an SQL query on the SQL interface object. The method returns a Valis table. A Valis
table is a flexible object, in which each column can have a different type (string, integer, double,
etc.). The table columns and types are automatically created by the ExecSQL method, and the table
is filled up with the query results.

table = sql.ExecSQL("select name,strand,
cdsStart,cdsEnd from genscan
where chrom = ’chr22’");
table.Display();

As before, we can display the table with the corresponding Display method. The last step creates
a scrollable Bander widget, with which we can display a sequence along the X axis and a number of
bands along the Y axis. We then load the sequence in the widget (at position zero) and create some
bands. Here band number b1 (resp. b2) is a boolean band, which will be true when the sequence is
either A or T (resp. G or C). bl1 is a block band, which will contain the results of the SQL query and
finally freq will get the word frequency of this particular sequence.

a = Valis.CreateObject("Annotools");
a.LoadSequence(seq,0);

bl = a.AddBand(1,"AT");

b2 = a.AddBand(1,"GC");
m=a.AddBand (1, "Masked");

bll = a.AddBand(5,"GenScan");
freq = a.AddBand(4,"Freq");

Now we can change color and sizes of the bands, and perform the necessary computations. Here
CharBand will create a band for true values when one of the characters (e.g., AT for “A or T”) is found:

a.CharBand (b1, "AT");
a.SetColor(bl,RGB(100,0,0)); //Red

a.CharBand (b2, "GC") ;

a.SetColor(b2,RGB(0,100,0)); //Green

a.CharBand(m,"N") ; //Either of the match fails
a.SetColor(bl1,RGB(0,200,200)); //Cyan



The last step will load a block band with rows from a table. Here the parameters are the table containing
the data to be accessed, the destination band, and the columns containing the starting position, ending
position, the strand and the description. Finally, we run an efficient word frequency analysis algorithm,
that will fill the frequency band with the occurrences of the substrings of length 15 starting at each
position:

.LoadBlocksFromTable(table,bl1,2,3,1,0);
.SetColor (freq,RGB(100,0,100));
.SetSize(freq,200);
.FindRepeats(freq, 14);
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.Display();

3 Valis: DNA Walk

DNA sequence can be thought of as a string composed of four letters {4, T, G, C}. A genome,
represented as a long string of letters, can be divided into different substrings denoted as coding regions
and noncoding regions. A genome is likely to exhibit many interesting local structures at various scales
and and thus deviate significantly from a random string generated by drawing each letter independently
and with equal probabilities. These deviations may have different statistical properties in the coding
regions (that participate in eventual translation into proteins) compared to that in noncoding regions.
In particular, we are interested in understanding how the letters on the string may associate with the
other letters on the same string and in measuring such statistical correlations.

DNA sequences are subjected to the changes caused by various cellular events. Examining the long-
range correlation within the sequences in different regions and different organisms is one of the simplest
ways to estimate the effect of those cellular events on DNA evolution.

The most interesting and also complex phenomena caused by different degrees of correlation are
exhibited via a fractal-like structure of the genome, with various patterns occurring in a scale-invariant
and self-similar manner. The level of correlation in the fractal-like structure of the genome can be
measured by its Hurst exponent, H, where 0 < H < 1, with H = 1/2 representing complete absence of
long range correlation.

There are two special behaviors that can be discerned from an annotated genomic sequence and
are directly determined by the existence of long-range correlation. One behavior will be modeled as a
Brownian motion, in which every letter in the string is independent of each other, indicating that there
is absolutely no long-range correlation within the string and that a biological machinery examining
the genome unidirectionally (say, from 5’-end towards 3’-end) cannot predict the unseen part of the
genome (“the future”) from the part of the genome (“the past”) recently examined!. Such a string has
its Hurst exponent, H = 1/2. The other behavior will be modeled as a fractional Brownian motion,
in which every letter in the string is dependent on each other. A string with a fractional Brownian
motion comes from a system with absolute long-term memory—thus the future counts on all the past.
Such a string has 0 < H < 1, but H # 1/2, excluding the case of pure Brownian motion. When
H < 1/2, it is an anti-persistent process with negative feedback-like mechanism. When H > 1/2, it is
a persistent process with positive feedback-like mechanism. It has been reported that the long-range
correlation in DNA sequences differs in coding and non-coding regions in some prokaryote-s like E. coli
(Peng et al., 1992 [15]). The DNA sequence behaves more like Brownian motion (with significantly low
long-range correlation) in the coding regions, whereas it behaves like fractional Brownian motion (with
some positive feedback-like long range correlation) in the non-coding regions. Similar phenomenon has
been found also in 10% of the yeast chromosome III (Stanley et al., 1994 [18]) and in myosin heavy chain

1We will frequently use this notion of time throughout the paper and directly relate the genome’s spatial dimension
to time when discussing Brownian motions. The other notions of time (e.g., evolutionary time), when they occur, will be
clearly distinguished in order to avoid confusion.



Organism E. coli E. coli S cercvisiac | 5. cercvisiac | Drosop Human Exp. Value
Region coding | non-coding coding non-coding coding coding in Brownian

motion
H value 0.5556 0.5794 0.5749 0.6399 0.6016 0.6027 0.5709T
Significance* P_| > 0.05 > 0.05 > 0.05 < 0.001 < 0.001 < 0.001

Table 1: Estimated Hurst exponents in different organisms and different regions of genomic sequences.
* The significance is tested using ANOVA with the null hypothesis being Brownian motion. { The
Hurst exponent for Brownian motion is estimated by equation in Appendix I. Its deviation from 1/2 is
due to data limit.

gene family for various organisms (Buldyrev et al., 1993 [1]). Valis provides a rich and comprehensive
set of tools for conducting a systematic analysis of such statistical behaviors for a broader data set
available now.

3.1 Analyzing Known Genomes

In order to study the scale-invariant long-range correlation of the DNA sequences, we view the DNA
sequences as being generated from a random walk model. We first map the whole genomic DNA
sequences following purine-pyrimidine binary rule:

[ {AGCTE - {-1,+1}"
A +1, G +1
C—-1, T -1

That means, we change purines (4/G) to +1 and pyrimidines (C/T) to —1. This creates a “DNA walk”
(see Peng et al., 1992 [15]) along the genome. The “DNA walker,” while scanning the genome from 5’end
to 3’end, in each step, moves either up (+1) or down (—1) at every base pair according to the binary
rule described earlier. If there is no long-range correlation, the walk is expected to realize a Brownian
motion. Otherwise, we observe a “walker” with long-term memory and thus a fractional Brownian
motion. Those two processes can be characterized by different values of the Hurst exponent H. Since
a high H value (H > 1/2) suggests the presence of stronger persistent long-range correlation, we could
look for subtle effects of evolutionary process and hypothesize how they may have come about. We use
many different algorithms, implemented in Valis, to estimate H—examples of such algorithms include
R/S analysis and Detrended Fluctuation Analysis (DFA). An outline of the R/S analysis algorithm is
given in Appendix I.

We have analyzed various genomes using Valis: bacteria, invertebrate and vertebrate. All the
DNA genomic sequences and annotations were downloaded from the publicly available NCBI Genbank
database(http://www.ncbi.nlm.nih.gov/Genbank/). Genomic sequences of a certain organisms were
separated into two subsequence files: one containing a concatenation of all the coding sequences (all the
regions making up the “genes,” i.e., all the exons) and the other containing all the non-coding sequences
(so-called “junk DNA,” i.e., all the introns and the intergenic regions). The same Hurst exponent
analysis with the R/S algorithm was used for all different organisms and their different sub-regions
within the genomic sequences. The Hurst exponent values were tested for significant differences against
the expected value in Brownian motion. Results R/S analysis are shown for the following organisms:
the whole genomic sequence of bacteria (Escherichia coli: K12), unicellular eukaryote (Saccharomyces
cerevisiae, yeast) and the coding region sequences of invertebrate (Drosophila melanogaster, fruitfly)
and vertebrate (Homo sapiens, humans). The long-range correlations calculation was based on a sample
size of at least 400,000bp. The results are summarized in Figure. 1. and in the following table:

We observe a consistent difference in H in the coding regions compared to the non-coding regions as
in previous work. The H values tend to be higher in the non-coding regions than in the coding regions.
Thus, the DNA walk down the coding region sequences behaves more like a Brownian motion, while
it acts as a fractional Brownian motion in the non-coding regions. For example, yeast has H = 0.57



in the coding regions, versus H = 0.64 in the non-coding regions. The higher H values in non-coding
regions indicate that the sequences in the non-coding regions possess stronger long-range correlation
than the coding regions. In addition, the H values in different regions increase with the evolutionary
position of the corresponding organism. What can cause such a genomic structure? What can be the
evolutionary advantages of having correlations? Or, is it possible that these are historical “debris” that
the evolution has not cared to clean up (“garbage-collect”)? How can one go about generating and
testing these hypotheses?

3.2 Making a Hypothesis
Based on our observations, we hypothesize that:

“The differences in the strengths of long-range correlation in DNA sequences are caused by
the counteractions of two sets of biological events. One set includes insertion and deletion
events caused by replication slippage and DNA mobile elements, which tend to increase DNA
long-range correlation. The other set includes natural selection and DNA repair mechanisms,
which try to eliminate the long-range correlation caused by the former events.

“However, the coding regions are under a higher natural selection pressure and possess the
transcription-coupled DNA repair mechanism that is unique to them. Thus, the stronger
correlation-elimination forces in the coding regions explains the weaker long-range correlation
observed there.

“The greater flexibility offered by larger genome sizes in the higher organisms allows for the
increase of long-range correlation in DNA sequences along the paths of the evolution tree.”

Testing these hypotheses with the available genomic sequences pose several challenges. Analyzing
the variation of the Hurst exponent from region to region does provide some clues to the structure
of the genomic processes, nonetheless, this is a rather crude tool for examining interactions of many
complex cellular processes. A better tool is provided by the power spectrum analysis algorithms for the
“DNA walker” models. Consider the random walk generated by a genomic sequence after it has been
binarized. Let X1 X5 --- X,,, - -- Xy be sequences of £1 obtained by binarizing a genomic sequence. Let
Sm=>1,X; (1 <m < N) and let the discrete Fourier transform of the series S1.S5 -+ Sy, -+ Sn be
given as

N
Sm = ZAkcos(mwk +Yr), m=1,...,N
k=1
where Aj’s are magnitudes at various frequencies. If the sequence S1Sz---S;, --- Sy behaves like a
fractal process (i.e., Brownian or fractional Brownian motion), then its magnitudes at various frequencies
obey an inverse power-law spectrum (see Figure. 5),

|[Ag)? o (wi/2m)7%, 1< a<3,

thus implying that

—%, where H = (o — 1) /2.
This relationship suggests that a fractal process is generated by a set of infinite or nearly infinite events
that operate at multitude of different scales. In particular, both Brownian and fractional Brownian
motion can be generated by such a biased distribution of events obeying an inverse power law with
respect to frequencies/scales. However, Brownian and fractional Brownian motion differ from each
other in their degrees of bias at different scales.[23]

What are such cellular events operating at multiple scales with a biased distribution? Do all such
events described in the biological literature suffice to explain the structure of the genomes? Are there
anomalous results that indicate that the current biological knowledge in this area lacks a sense of
finality?



In cells, different cellular events acting on DNA sequences have different effective radii (number of
consecutive bases that are affected by such an event) and different probability of occurrence. Those
events act on DNA sequences concomitantly. Their various effective radii and diversified probabilities
readily suggest a power spectrum that could explain the Brownian or fractional Brownian motion like
behavior observed in genomic DNA sequences (see Figure. 5). Such a hypothesis can be tested via in
silico experiments and analysis of the available genomes. For both processes, we cataloged all the known
cellular events and examined how the design of Valis could be enriched to facilitate in silico experiments
to test our hypothesis (or other future hypotheses of similar nature.)

e Spontaneous Point Mutation: Spontaneous point mutation, where a single base of A, T, C
or (G is substituted by a different base, is the random initiation force for the generation of small
repeats, deletions or even palindromic structures. Although it has only a very small effective
radius (usually 1 bp) it provides the potential sites for events with much larger effective radius.

¢ Replication Slippage: (See Figure. 2) Some DNA sequences are prone to misalignment during
DNA replication, resulting in insertion or deletion of short subsequences in the replicated genome.
For example, if there are tandem repeats or secondary structure in the template DNA strand
during DNA replication, it may cause DNA polymerase to pause, dissociate and continue strand
extension after misalignment (see Viguera et al., 2001 [21]; also see Fujii et al., 1999 [7] and
Bzymek et al., 2001 [2]). A run of the same nucleotide increases the rate of small frameshift
significantly. Similarly, sequences with inverted patterns flanked with directed repeats (a pattern
capable of forming hairpin structures during replication) are about hundred times more likely
to be deleted. (For other examples, see Tran et al., 1995 [19]). Therefore the effective radius of
replication slippage causing deletions and insertions on DNA sequences ranges from 1bp to around
100bp, with the probability decreasing dramatically with the increase of the radius.

e Mobile DNA Elements: (See Figure. 3) Mobile DNA elements mostly include insertion el-
ements, transposons, and retrotransposons. In their nonreplicative transpositions, the mobile
elements is excised out of its original position (donor DNA), leaving in its donor DNA a double-
strand break and sometimes, two tandem copies of its flanking directed repeats. In their replicative
transpositions, the mobile elements are replicated through transcription and reverse transcription.
The original copy on the donor DNA is not removed. The newly replicated copies can insert them-
selves elsewhere in the genome where target sequences can be found. Thus, the transposition of
mobile DNA elements can also cause deletion and duplication in genomic DNA sequences. The
frequency of transposition and size of deletion or insertion varies corresponding to specific ele-
ments. But since the target sequences are widely distributed in the whole genome, the mobile
elements can essentially affect the sequence changes on the whole genome range.

e Mismatch Repair: (See Figure. 4) Mismatch repair (MMR) mechanism, as other DNA re-
pair mechanisms, is highly conserved from E. coli to human (Eckstein & Lilley, 1998 [5]). It
specifically targets and corrects DNA mismatches (from single base pair mismatch, to small in-
dels [insertions-deletions], and to larger loops formed by deletion or duplication events) with
strand specificity. While bacteria have a single pathway that is well understood, the eukaryotes
have evolved different subpathways that specifically target mismatches of different sizes. The «
complex-dependent subpathway mainly corrects single base mismatch or frameshifts of size +1
or —1 bp. The 8 complex-dependent subpathway can correct small loops efficiently up to around
13 bp (Sia, 1997 [17]). Furthermore, there is emerging evidence for a less well-known mismatch
repair system that targets for large loops up to several Kb (Clikeman et al., 2001 [4]). Addition-
ally, MMR plays an important role during DNA recombination. It has anti-recombination effect
on homologous (more divergent) recombination. MMR recognition and correction can destroy or
reverse formation of recombination intermediates.

However, MMR efficiency depends on the target context. DNA loops with palindromic sequences
or other sequences that can form hairpin structures can escape MMR (Moore, 1999 [11]). These



MMR. dependent events have an effective radius ranging over a wide region—from 1 bp to several
Kbs. But its efficiency is largely affected by the surrounding sequences in the genome and thus can
effectively modulate long-range correlation difference in coding and non-coding DNA sequences.

e Transcription-coupled DNA repair: (TCR) It is one of the two sub-pathways in nucleotide
excision repair (NER) mechanism. It specifically corrects the DNA lesions in actively transcribed
strands. It is also highly conserved both functionally and structurally from bacteria to human.
(see Eckstein & Lilley, 1998 [5]). The presence of such extra surveillance force on gene-containing
sequences may decrease the chance of spontaneous point mutations in those regions. Thus, TCR
can largely decrease the random initiation force in gene-containing regions for the generation of
small repeats, deletions or even palindrome structures, compared with non-gene regions in the
same genome.

e Natural selection: It is well known that the sequence changes in coding regions are much
less tolerable than those in the non-coding regions. Although sometimes coding region changes
may reflect the selection of adaptation, in most cases it leads to higher lethality or infertility
of the individual. However, since changes are more tolerable in non-coding regions, they may
be replicated and propagated in the progenies. Therefore, most changes in the coding regions,
although not directly prevented, are ’screened out’ by natural selection, maintaining the coding
region unperturbed. In contrast, similar changes in the non-coding regions are subject to much
less selection pressure and are left uncorrected. Finally, the greater flexibility offered by larger
genome sizes in the higher organisms allows for the increase of long-range correlation in DNA
sequences along the evolution tree.

In order to test the hypothesis that the processes described earlier explain how the genome structure
has evolved, we suggest that we could carry out in silico evolution embodying dynamics of these
processes and statistically test whether the in silico genomes have same statistical structures as the in
vivo genomes at every scale. Thus this suggests that Valis as a bioinformatic tool must possess not just
analysis tools but also synthesis tools of comparable power.

4 Genome Grammar and in silico evolution

The genome synthesis tools are structured around a “Genome Grammar”. This is a stochastic grammar
with primitives for many kinds of mathematical probability distributions. Valis can even generate a
sequence with the same probability distribution as measured from biological data. Furthermore, there
are tools that let one apply some hypothesized processes on sequences obtained from the grammar.
This enables biologists to test any model and conduct evolutionary experiments in silico.

DNA evolution simulation of the kind, needed to test our earlier hypothesis, should have essentially
two qualities: the ancestral genome that we start the evolution from must have the structure similar to
the natural ones and such genomes can be modified efficiently in the computer with a set of primitive
operators that can be endowed with a probability distribution and effective radii. The former can be
achieved with a “stochastic context free grammar” and the later an be accomplished with a series of array
operators that can operate on the character array (DNA sequence) simultaneously. These operators
can be context-dependent and can afford sufficient expressibility to simulate the actual cellular events.
Furthermore, many parameters associated with these operators can be easily changed to simulate effect
of different ambient conditions or a mutant. Use of stochastic grammars to generate genomic sequences
is not new (see Myers, 1999 [12] and Searle, 1993 [16]).

4.1 Grammars to Describe Genomes

Grammars are basic tools from linguistics that also find widespread usage in computer science to for-
malize computer languages (usually context free languages). They are also used to describe strings



generated by a discrete system with constant amount of memory (regular languages or linear gram-
mars) or other structured objects (e.g., graph grammars). These grammars formalize how concrete
objects can be constructed out of structured abstract objects (non-terminals) each one capable of being
further recursively expanded to create partially-formed structures with both abstract (nonterminal)
and concrete (terminal) objects. This process of successive expansion of “sentential forms” terminates
with a concrete structure whose interpretation depends on how it was constructed by expansion rules
(production rules) of the grammar.

These concepts can be used in the domain of biology. For instance, in the genome, certain regions
of the genomes have different functional purposes and they must associate with each other in a specific
manner to provide those biological functionalities. The natural selection determines how well these
functionalities and their associations need to be conserved. Thus, the genome may be associated with
rules such as “genes are made of exons and introns;” “the regulatory regions for the genes must have
certain physical relations with the genes that they regulate;” “the telomeric regions may have certain
repeat structures,” etc. These rules can be translated into a “genome grammar,” where the abstract
notions are embodied in the notions of “genes,” “promoters,” “enhancers,” “transposons,” “satellites,”
etc.

Thus, a (context free) grammar consists of a (finite) set of symbols T (the terminals, here the
bases), another (finite) set of symbols N (the non-terminals, the hidden variables like { CodingRegion
)), a specific non-terminal symbol S (the start symbol, e.g. { Genome )) and a sequence of rules of the
form

NONTERMINAL — (NONTERMINAL + TERMINAL)*.

Such a rule is interpreted as denoting an allowed rewriting, replacing the non-terminal on the left hand
side (head) of the rule with the string on the right (the body). A generalization of this process allows
a rule to be applied probabilistically and leads to a more natural approach to describing biological
sequences. Thus, we are led to rules of the form

NONTERMINAL -2 (NONTERMINAL + TERMINAL)*.

These probabilistic grammars, (also called, stochastic grammars), naturally lead to not just a set
of sequences, but certain probability distributions over the set of all possible sequences. The so-called
hidden Markov models, with wide-spread use in the bioinformatics community, are special cases of
stochastic grammars.

A “toy” genome example using “stochastic grammar” can capture the following biological concepts:
“A region immediately surrounding a gene can be thought of as consisting of a regulatory sequence,
which determines when the gene will get turned on, followed by a sequence of ezons and introns, followed
by a sequence called the terminating sequence. Exons are the parts of the gene that actually carry the
code for a protein. Introns are subsequences in this region that occur between successive exons.” A
grammar describing these ideas is as follows:

(Gene) — {(RegulatorySequence) (CodingRegion) {TerminatingSequence)
(CodingRegion) —> (Exzon) (Intron) (CodingRegion) | (Exon)

While, at this level, the grammar is non-stochastic, probabilities enter in a significant manner as we
describe the base pair structure of the exons and introns or how the lengths of the exons and introns
are distributed.

4.2 Linear Automaton

We need a few other components to construct a usable system that can model the cellular evolutionary
events. These events can be described via the following process, that models a biological machinery
(e.g., a protein complex or an enzyme) walking along the DNA and modifying the DNA under local
scrutiny:



1. The machinery looks for a certain initiation recognition site on the DNA sequence (they could
be determined by the constituent bases, the physical or chemical properties determined by them,
etc.) The initiation site also depends on the properties associated with the machinery itself. This
process can be used, for instance, to model how a transcription factor may associate itself to a
regulatory sequence.

2. After such a machinery recognizes the site, it starts to “walk” along the DNA sequence changing
its own state if necessary, and changing the DNA sequence it passes over.

3. At some point (probably when it encounters the terminating site), this process halts.

Depending on the distribution of the initiation sites, and the relative distributions of the correspond-
ing termination sites, we can associate an effective radius as well as a probability distribution to each
of the events that can be mediated by these machinery.

A naive implementation of the above scheme is straightforward, but will not efficiently scale to
allow the presence of many large eukaryotic genomes. Thus, simulation of recombination events in
DNA evolution in large populations might involve code of the form:

StrandSet «— { Strandl, Strand2}
loop
S1 +— random(StrandSet)
S2 «— random(StrandSet)
(Sucel, Suce2) «+— RandomRecombination(S1,S2)
StrandSet «— StrandSet U {Succl, Succ2}
end loop

Since a recombination event changes only a limited region of the chromosome, we are led to an
ever-expanding pool of large strands which differ at very limited regions from one another. A naive
implementation which does copy-on-write will not perform well on such complex simulation problems
requiring, for instance, the ability to track recombination events over multiple chromosomes. Further-
more, in practice, we will generate our sequences from some stochastic grammar artificially, but may
combine them with some natural genomes obtained from a database of sequences.

Our implementation in Valis, makes intelligent use of the “biological properties” of the sequence data
and avoids inefficient memory usage, as follows: we keep the sequences as B+ trees of logical nodes which
point to physical nodes containing actual data. We also keep track of the transformations which were
applied to that particular sequence. The data-structure supports many “house-keeping operations” with
the property that even after insertion or deletion events, one can still access the appropriate element from
the sequence. In Valis, direct concatenation of sequences still remains expensive and is implemented
via a logical concatenation operator, which “remembers” that two sequences were concatenated. All
these operators are available to a higher level garbage-collector like subsystem which hides these details
of the implementation.

5 Biology and in vivo evolution

Results of the in silico evolution will take us back to biology. We need to be able to recreate (in a
statistical sense) the in silico evolution using a real organism. There are various mutant organisms
that differ from their related “wild-types” in the way our modeled cellular events has been naturally
modified in these mutant organisms. These mutants may have suffered significant changes to some of
these cellular events in one (or both) of the following two ways: either the effective radius has changed
or in the occurrence probability at a particular scale. Those mutants are the natural candidates for
“debugging” our in silico experiments, completing a cycle of reasoning. As an example, one of our
favorite candidates is pol3-t, a temperature-sensitive mutant in yeast DNA polymerase §. Under non-
permissive temperature, the pol3-t mutation increases the rate of small deletions by up to 100 fold (Tran
et al., 1995 [19]; Tran et al., 1996 [20]). For another example of how these systems can be perturbed
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in vivo, consider the two mismatch recognition complexes in eukaryotes. Both of them contain MSH2
protein. « complex has MSH6, and it preferentially targets single base pair mismatch or frameshifts
of size one. B complex contains MSH3, and it recognizes larger DNA loops more readily. Mutation in
MSH2 leads to an increase of DNA sequence changes in a wide range (from 1 bp to 16 bp). However,
the deficiency in MSHG6 only specifically elevates the rate of 1-2 bp changes and causes instability of
small microsatellites and minisatellites. The defect in MSH3, on the contrary, can increase the rate of
larger sequence changes (> 5 bp) by tens of fold (Sia et al., 1997 [17]). Therefore, even the mutations
involved in the same cellular event can lead to completely different changes in the effective radius or
occurrence probability of such event.

By tracking the changes in the genomic sequences of those mutants during evolution and by compar-
ing them with their wild-type “controls,” we expect to gather all kinds of information about the genomic
evolutionary processes. Other researchers have traced over 10,000 generations of bacteria population
in lab (Lenski and Travisano, 1994 [10]). The E. coli strains undergoing uninterrupted laboratory
evolution include some MMR mutants (Vulic et al., 1999[22]). Similar experiment can be set up for
budding yeast in order to explore eukaryotic sequence evolution. A biologist will find Valis an invaluable
tool for conducting similar large-scale experiments, making hypotheses and validating/falsifying these
hypotheses through quantitative analysis.
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Appenix I

R/S Analysis.

Let X = X1 X5--- X, --- be a sequence over the alphabet +1.
Consider n disjoint substrings of X each of length [. Without loss of generality, assume that one

such substring is denoted as X1 X5 ... X;. Let

1
7 — Ei:l Xi
7l .
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Similarly, let its Range be defined as

R, = max, {Z(Xi - 7)} - 1?221 {Zl(Xi - 7)} .

i=1

Its Standard Deviation is defined as

= X, X
. ,i - 2
Sl — [Ezl( ) ] .
Now the R/S is computed for a fixed value of [ as

(R/S) = ——— = pI,

Y B

=1 g(k)

k Sz
n

where the index k ranges over the n blocks selected. Thus
log(R/S); = alogl + log 3,

and
_ log(R/S) —log .

H =
@ log!

B Appendix I1

The JScript example in Section. 2 can be rewritten in PERL and run in Valis. Many bioinformatics
researchers are more familiar with PERL and may prefer PERL over JScript. The flexibility provided
by Valis allows the user to maintain backward compatibility with existing bioinformatics code in PERL.

#language PERL
$Valis->Clear();

$sql = $Valis->CreateObject("Sql");
$sql->Connect ("DSN = mysql; UID = someuser; PWD = somepwd");

$seq = $Valis->CreateObject ("DNASeq");
$seq->Input ("C:\\GoldenPath\\chr22.fasta");
$seq->SelectSequence(1) ;

$seq->Display();

$table=$sql->ExecSQL("select name,strand,cdsStart,
cdsEnd from genscan
where chrom = ’chr22’");
$table->Display();

$a = $Valis->CreateObject("Annotools");
$a->LoadSequence ($seq,0) ;

$b1 = $a->AddBand(1,"AT");

$b2 = $a->AddBand(1,"GC");
$m = $a->AddBand (1, "Masked");
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$bl1 = $a->AddBand(5,"GenScan");

$a->CharBand ($b1,"AT");
$a->SetColor ($b1,RGB(100,0,0)); #Red

$a->CharBand ($b2,"GC") ;
$a->SetColor ($b2,RGB(0,100,0)); #Green

$a->CharBand ($m,"N") ;

$a->SetColor ($bl1,RGB(0,200,200)); #Cyan
$a->LoadBlocksFromTable($table,$bl1,2,3,1,0);

$freq = $a->AddBand (4, "Freq");
$a->SetColor ($freq,RGB(100,0,100));
$a->SetSize($freq,200);
$a->FindRepeats($freq, 14);

$a->Display();
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