An Efficient algrithm to find All 'Bidirectional' Edges of an Undirected Graph.

B. Mishra,
Department of Computer Science, Carnegie-Mellon University
Pittsburgh, PA 15213

ABSTreac'r. An efficient algorithm for the All-Bidirec-tional-FIges Problem is presented. The All-BidirectionalEdges Problem is to find an edge-labelling of an undirected network, $G=\left(V, E^{\prime}\right)$, with a source and a sink, such that an edge $[u, v] \in E$ is labelled $\langle u, v\rangle$ or $\langle v, u\rangle$ (or both) depending on the existence of a (simple) path from the source to sink that visits the vertices u and v, in the order u, v or v, u, respectively. The algorithm presented works by partitioning the graph into a set of bridges and analyzing them recursively. The time complexity of the algorithm is shown to be $O(|E| \cdot|V|)$.

The problem arises naturally in the context of the simulation of an MOS transistor network, in which a transistor may oprrate as a unilateral or a bilateral device, depending on the voltages at its source and drain nodes. For efficient simulation, it is required to detect the set of transistors that may operate as bilateral devices. Also, this algorithm can be used in order to detect all the sneak paths in a network of pass transistor.

Introduction

Let $G=(V, E)$ be a finite undirected graph with two distinguished vertices, the source, s, and the sink, t. We call an edge $e=[u, v]$ of G 'bidirectional', if there are two simple paths connecting s and t and traversing e in either order - u, v and v, u. Similarly, we call an edge $e=[u, v]$ of G 'unidirectional', if every simple path connecting s and t and containing e, traverses e only in one order, say u, v; additionally, e is labelled $\langle u, v\rangle$. The All-BidirectionalEdges problem is to find all the 'bidirectional' and 'unidirectional' edges of G, together with the labellings of the 'unidirectional' edges.

From an alternative formulation of the problem it is easy to see that we can label each edge $[u, v] \in E$ by asking two questions: (i) Are there two disjoint paths $s \xrightarrow{*} u$ and $v \xrightarrow{*} t$? (ii) Are there two disjoint paths $s \xrightarrow{*} v$ and $u \xrightarrow{*} t$? There are $O(|E| \cdot|V|)$ time algorithms to find two vertex disjoint paths in an undirected graph, independently discovered by Ohtsuki(1980)[7], Seymour(1980)[9] and Shiloach (1980) [10]. The naïve way of solving the All-Bidirectional-Edges problem is to invoke an algorithm

Figure 1: (a)) A circuit for $\neg((A \wedge B) \vee(B \wedge C \wedge D) \vee(C$ $\wedge E)$). (b)) The resulting subgraph after common subcircuit climination. However, becanse of the sneak path through D, it is, in fact, a circuit for $\neg((A \wedge B) \vee(B \wedge C \wedge D) \vee(C \wedge E)$ $\vee(A \wedge D \wedge E))$. (c)) The corresponding graph in which D is 'bidirectional' and all other edges are 'unidirectional.'
for Two-Disjoint-Path twice per each edge. This takes $O\left(|E|^{2} \cdot|V|\right)$. On the other hand, existence of an algorithm for All-Bidirectional-Edges problem, with a timecomplexity lower than $O(|E| \cdot|V|)$, readily, results in a similarly efficient algorithm for Two-Disjoint-Paths problem, which is unlikely.

In this paper, we describe an $O(|E| \cdot|V|)$ time algorithm for All-Bidirectional-Edges problem, using a completely new approach. The algorithm makes a novel use of bridges of a circuit in a general graph.

The problem of finding all 'bidirectional' edges arises naturally in the context of the simulation of an MOS transistor network, in which a transistor may operate as a unilateral or a bilateral device, depending on the voltages at its source and drain nodes. (Cf. Brand (1983)[2], Frank (1984)[5].) For efficient simulation, it is important to find the set of transistors that may operate as bilateral devices. Also, sometimes it is desired that information propagates in one direction only, and propagation in the wrong direction (resulting in a sneak path) can cause functiosal error. (See Figure 1) Cur algorithm can be used to detect all the sneak paths.

1. Preliminaries

This section introduces some useful graph theoretic terms. The term 'bridge' is taken from Tutte(1977)[13].

This work was supported in part by NSF grant MCS-8216706.

Figure 2: Bridges of J. Bridges B_{1}, B_{2}, B_{3} and B_{6} are proper bridges, and B_{4} and B_{5} are degenerate bridges. The bridges B_{1} and B_{2} interlace.
Definition 1.1: A vertex of attachment of a subgraph H of G is a vertex of H that is incident in G with some edge not belonging to H. Let J be any circuit of G. We define a bridge of J in G as any subgraph B that satisfies the following three conditions:

1. Each vertex of attachment of B is a vertex of J.
2. B is not a subgraph of J.
3. No proper subgraph of B satisfies the above conditions. \square
Definition 1.2: (Cf. Figure 2.) An edge $e=[u, v]$ of G not belonging to J but having both ends in J is referred to as a degenerate bridge. Let G be the graph derived from G by deleting the vertices of J and all their incident edges. Let C be any component of G^{-}Let B be the subgraph of G obtained from C by adjoining to it each edge of G having one end in C and one in J, and adjoining also the ends in J of all such edges. The subgraph B satisfies the conditions to be a bridge. Such a bridge is called proper. The component C of G^{-}is the nucleus of B.
Definition 1.3: Let the vertices of attachment of a bridge B of J be $W(G, B)=\left\{v_{0}, v_{1}, \ldots, v_{k-1}\right\}$, where v_{0}, v_{1}, \ldots, v_{k-1} is their enumeration in the cyclic order on J. The vertices of attachment dissect J into k subpaths L_{0}, L_{1}, \ldots, L_{k-1} such that $L_{j}=J \llbracket v_{j} ; v_{j+1}(\bmod k) \rrbracket$. These subpaths are called the residual paths of B in $J . w(G, B)$ will stand for $|W(G, B)|$.
Definition 1.4: Let B_{1} and B_{2} be two distinct bridges of a circuit J of G.

- We say B_{1} avoids B_{2} if and only if one of the following two conditions is satisfied:

1. $w\left(G, B_{1}\right) \leq 1$ or $w\left(G, B_{2}\right) \leq 1$.
2. All the vertices of attachment of B_{1} are contained in a single residual path L of B_{2}.

- If B_{1} and B_{2} do not avoid one another we say that they overlap.
- If there exist two vertices of attachment x_{1} and x_{2} of B_{1} and two vertices of attachment y_{1} and y_{2} of B_{2}, all four distinct, such that x_{1} and x_{2} separate y_{1} and y_{2} in the circuit J, then we say that they interlace.
- If B_{1} and B_{2} have exactly the same set of vertices of attachment we say that they are equivalent.

Figure 3: $B^{P Q_{-}}, B^{P}$ - and $B^{Q_{-}}$-bridges of P and Q. Bridges B_{1}, B_{2} and B_{3} are $B^{P Q}$-bridges; B_{4} is a B^{P}-bridge and B_{5}, a B^{Q}-bridge.
Definition 1.5: Let J be a circuit of the graph G. A path N in G avoiding J but having its two ends x and y in J is called a cross-cut of J from x to y.
Definition 1.6: (Cf. Figure 3.) Let J be a circuit of the graph, G such that s and t lie on J. Let the subpath $J \llbracket s ; t \rrbracket$ be P and its complementary subpath in J be Q. The bridges of J are classified as follows:

- $B^{P Q}$ - Bridges: The set of bridges with at least one vertex of attachment on $P \rrbracket s ; t \llbracket$ and at least one vertex of attachment on $Q \rrbracket s ; t \llbracket$.
- B^{P}-BRIDGES: The set of bridges with at least one vertex of attachment on $P \| s ; t[$ and no vertex of attachment on $Q\|s ; t\|$.
- B^{Q}-BRIDGES: The set of bridges with no vertex of attachment on $P \rrbracket s ; t \llbracket$ and at least one vertex of attachment on $Q \rrbracket s ; t \llbracket$.

Definition 1.7: Let J, P and Q be as in the previous definition. Then J is called an ambitus if every B^{P} - or B^{Q}-bridge avoids every $B^{P Q}$-bridge.
Definition 1.3: Let J, P and Q be as before and $B=$ B_{1}, \ldots, B_{k} be the B^{P}-bridges with respect to P. A nonempty subset of bridges $\mathbf{B}_{n} \subseteq B$ is called a block of B^{P}. bridges if it satisfies the following two conditions:

1. If $B_{i} \in \mathbf{B}_{n}$ and B_{i} and B_{j} overlap, then $B_{j} \in \mathbf{B}_{n}$.
2. No non-empty proper subset of \mathbf{B}_{n} satisfies the preceding condition.

Definition 1.9: Let $G=(V, E)$ be a graph. The tree $T=\left(V^{\prime}, E^{\prime}\right)$ of the graph G is an undirected graph such that: The set of vertices V^{\prime} correspond with the nonseparable components (green) and the separation vertices (blue); and the edges of T connect green vertices to blue vertices if and only if the nonseparable component contains the separation vertex.
Definition 1.10: A graph $G=(\dot{V}, E)$ with distinguished vertices s and $t,(G ; s, t)$ is said to be a chain graph, if the tree of the graph G is a path P from C_{s} to C_{t} consisting of alternating green and blue vertices, where C_{s} and C_{t} are the nonseparable components of G containing the vertices s and t, respectively.

We present the following propositions that will be used quite often later on.

Proposition 1.11: (Even[3]) Let x, y and z be three distinct vertices of attachment of a bridge B of J in G. Then there is a vertex v belonging to the nucleus of B for which there are three internally vertex disjoint paths in $B: Y_{1} \llbracket x ; v \rrbracket, Y_{2} \llbracket y ; v \rrbracket$ and $Y_{3} \llbracket z ; v \rrbracket$.

Following Tutte[14], we define a Y-graph as the union Y of three paths Y_{1}, Y_{2} and Y_{3} which have one end v in common but are oherwise mutually disjoint. We call v the center and the paths Y_{i} the arms of Y.
Proposition 1.12: Let x, y and z be three distinct vertices of attachment of bridge B of J in G and let e be an edge of B such that there is a cross-cut of J between x and y containing e. Then at least one of the two following conditions is satisfied: (1) there is a cross-cut of J between x and z containing e (2) there is a cross-cut of J between y and z containing e.
PROOF. The proof is similar to that of the proposition 1.11 and hence, omitted.
Proposition 1.13: (Tutte[1.3]) Let B_{1} and B_{2} be distinct overlapping bridges of a circuit J of G. Then either B_{1} and B_{2} interlace or they are equivalent 9 -bridges.

2. Overview

For the case of exposition, the algorithm is presented in two parts: The first part is simple but provides an algorithm of time-complexity of $O\left(|E| \cdot|V|^{2}\right.$) (to be improved later); it also identifies a graph of suitable structure (called a Type.IV graph) such that an efficient algorithm for such graph yields an efficient algorithm for general graphs. The second part, on the other hand, is more complicated but provides an $O(|E| \cdot|V|)$ time algorithm for a Type.IV graph, which, in turn, implies an $O(|E| \cdot|V|)$ time algorithm for the general graphs.

In the first part (Section 3), we introduce four different classes of graphs: Type.I, Type.II, Type.III and Type.IV graphs, of successively simpler structure and show that we can label the graphs of a particular type efficiently, on the assumption of existence of efficient algorithms for the subsequent types. In the process we give a set of four mutually ${ }^{\dagger}$ recursive algorithms such that these, together with an algorithm for TyPE.IV graph of time complexity $O(T(|E|,|V|)) \geq O(|E| \cdot|V|)$, will result in an $O(T(|E|,|V|, i)$ algorithm for general graphs. The first part concludes with an $O\left(|E| \cdot|V|^{2}\right)$ algorithm for Type.IV graphs.

In the second part (Section 4) we sketch an $O(|E| \cdot|V|)$ time algorithm for TYPE.IV graph. This is a Divide-and-Conquer algorithm and relies on an important concept, called a U-Frogment. Intuitively, a U-Fragment can be thought of as a super node which can be entered or exited through its end vertices ($s s^{\prime}$ and t^{\prime}) or its upper and lower external attachments. The task is to find suit-
\dagger. Analysis of a TYPE.III graph may result in a call to the main algorithm.
able vertex disjoint paths in this super node, connecting end vertices and external attachments. These paths can be extended to appropriate vertex-disjoint paths in the outer U-Fragment (recursively) or in a TYPE.IV graph. Such paths are guaranteed to exist if and only if the UFragment is feasible (Definition 4.2) and has certain disjoint pairs of Cross-Cuts. The main idea of the algorithms is to find such paths and to use them to label the edges.

3. A Simple Algorithm

3.1. Assumptions and Classification

Assumption 3.1: The graph, G, is a finite connected undirected strict graph.

Assumption 3.2: The graph, G, is a chain graph.
Justification for the Assumption 3.2. Let P be a path in the tree of $G, T(G)$ from C_{s} to C_{t} consisting of alternating green and blue vertices. Let $C_{s}=C_{1}, C_{2}, \ldots, C_{m}=C_{t}$ be the nonseparable components (green) and $a_{1}, a_{2}, \ldots, a_{m-1}$ the separation vertices (blue) on P. Let $s_{1}=s, t_{m}=t$ and $s_{i}=a_{i-1}(1<i \leq m)$ and $t_{i}=a_{i}(1 \leq i<m)$. Let $E_{1} \subseteq E$ be the edges of the C_{i} 's and $E_{2}=E \backslash E_{1}$.
Theorem 3.3: Let $G=(V, E)$ be an undirected network with a source s and sink t and let E_{1} and E_{2} be the partition of the edges, E as described. For each edge $e \in E$, $e \in E_{2}$ iff there is no simple path from s to t containing e.

In a pre-processing step, we find and delete the edges, E_{2} to obtain the graph G^{\prime}, and present each non-separable component ($C_{i} ; s_{i}, t_{i}$) of G^{\prime} as input to the main algorithm. The preprocessing step takes $O(|E|+|V|)$ time.
Definition 3.4: We introduce a classification of graphs as follows: (i)A nonseparable graph is said to be of type I, if it has a circuit J containing the vertices s and t and all its bridges are B^{P} - B^{Q}. or $B^{P Q}$-bridges; (ii) type I, if it is of TYPE.I and all its bridges are of $B^{P Q_{-} \text {-bridges; }}$ (iii) type III, if it is of Type.II and has only a single $B^{P Q}$-bridge; and (iv) type $I V$, if it is of TYPE.III and the subgraph, derived by deleting the vertices s and t together with their incident edges, is nonseparable.

3.2. Labelling a Chain Graph

Assume that we have an algorithm, called Label-TYPE-I to label the edges of a TYPE.I graph.

Algorithm LABEL-GRAPH. (Cf. Figure 4.)

- STEP 1. Find the nonseparable components of the graph. Let $C_{1}, C_{2}, \ldots, C_{m}$ be the chain of nonseparable components and let s_{i} and t_{i} be the vertices associated with C_{i} (Cf. Assumption 3.2). For each ($C_{i} ; s_{i}, t_{i}$), where $1 \leq i \leq m$, do the following steps.
-STEP2. Find a circuit J containing the vertices s_{i} and t_{i} in C_{i}. Since C_{i} is nonseparable such a circuit exists and can be found in $O(|E|)$ time, using depth-first search

Figure 4: Steps of the Algorithm Label-Graph.
technique. We call the subpath $J \llbracket s_{i} ; t_{i} \rrbracket, P$; and its complementary residual path in J, Q.

- STEP3. Find all the bridges of C_{i} with respect to the circuit J. Lel $\mathcal{G}=\left\{G_{2}, G_{3}, \ldots, G_{k}\right\}$ be the set of bridges with only attachments s_{i} and t_{i}; and let B be the set of B^{P}. , $B^{Q_{-}}$and $B^{P Q}$-bridges of J. Let G_{1} be the graph derived from C_{i} by deleting the bridges of \mathcal{G}. Since G_{1} is a Type.I graph, by assumption we can label the edges of G_{1} using the algorithm LABEL-TYPE-I. Moreover, since $G_{i} \in \mathcal{G}$ is a chain graph, the labelling for G_{i} can be done by recursively calling the main algorithm. We can find the bridges in $O(|E|)$ time as in the planarity testing algorithm.
Theorem 3.5: Assume that LABEL-TYPE-I correctly labels the edges of a TYPE.I graph. Then the algorithm Label-Graph correctly labels the edges of a nonseparable graph.

3.3. Labelling a Type. I Graph

Assume that we have an algorithm, called Label-Type-II, to label the edges of a TyPE.II graph.

Algorithm LABEL-TYPE-I.(Cf. Figure 5.)

-step 1. Modify J to obtain a circuit J^{\prime} such that J^{\prime} is an ambitus. Let $\mathbf{B}_{1}, \mathbf{B}_{2}, \ldots, \mathbf{B}_{n}$ be its blocks of B^{P} and B^{Q}-bridges; and s_{i} and t_{i}, the left- and the right-most

[^0]vertices of attachments of the bridges of \mathbf{B}_{i}, respectively. Let $G^{\prime \prime}$ be the graph derived from G by first deleting all the blocks B_{i} and then replacing $\left.P \llbracket s_{i} ; t_{i}\right]$ or $Q \llbracket s_{i} ; t_{i} \rrbracket$ (depending on whether B_{i} is a block of B^{P}. or B^{Q}-bridges, respectively) by a single link $\left[s_{i}, t_{i}\right]$. we refer to $\left[s_{i}, t_{i}\right]$ as a pseudo-edge (I) of the block \mathbf{B}_{i}. This step can be done in time $O(|E|+|V|)$. A linear time algorithm for finding the ambitus can be found in the full paper.

- STEP 2. Since graph $G^{\prime \prime}$ is a TYPE.II graph, by assumption, we can label the edges of $G^{\prime \prime}$ using the algorithm Label-Type-II.
-STEP3. For each block \mathbf{B}_{i}, where $1 \leq i \leq n$, do the following: If the pseudo-edge of \mathbf{B}_{i} is labeled 'bidirectional' by the Step. 2, then all edges of \mathbf{B}_{i} are 'bidirectional'; otherwise, label the edges of \mathbf{B}_{i} by calling LABEL-GRAPH with the argument $\left(\mathbf{B}_{i} ; s_{i}, t_{i}\right)$.

Let G be a Type.I graph with circuit $J=P \cup Q$. Let B_{i} be a block of B^{P}-bridges of G and let its left- and right-most vertices of attachment be s_{i} and t_{i}.
Lemma 3.6: Let G^{\prime} be the graph derived by first deleting \mathbf{B}_{i} from G and then replacing the subpath $P\left[s_{i} ; t_{i}\right]$ by \boldsymbol{a} single link $\left[s_{i}, t_{i}\right]$, called the pseudo-edge of $\mathbf{B}_{\mathbf{i}}$. (i) If in a legal labelling of $G^{\prime},\left[s_{i}, t_{i}\right]$ is labelled 'bidirectional' then all edges of \mathbf{B}_{i} are 'bidirectional'. (ii) If in a legal labelling of $G^{\prime},\left[s_{i}, t_{i}\right]$ is labeiled $\left\langle s_{i}, t_{i}\right\rangle$ then the labelling of the eilges of \mathbf{B}_{i} are determined by that of $\left(\mathrm{B}_{i} ; s_{i}, t_{i}\right)$.
Lemma 3.7: Let $G^{\prime \prime}$ be the graph derived from G by replacing every block \mathbf{B}_{j} of $B^{P^{-}}$- and B^{Q}-bridges by the corresponding pseudo-edge $\left[s_{j}, t_{j}\right]$. Then $\ell\left(\left[s_{i}, t_{i}\right]\right)$ in $G^{\prime}=$ $\ell\left(\left[s_{i}, t_{i}\right]\right)$ in $G^{\prime \prime}$.

Theorem 3.8: Suppose Label-TyPE-II correctly labels the edges of a TYPE.II graph. Then the algorithm Label-TYPE-I correctly labels the edges of a TYPE.I graph.

PROOF. Follows from the previous two Lemmas.

3.4. Labelling a Type.II Graph

We assume that we have an algorithm, called LabeL-Type-III to label the edges of a Type.III graph.
Algorithm LABEL-TYPE-II. (Cf. Figure 6.)
-STEP 1. Let $B_{1}, B_{2}, \ldots, B_{n}$ be $B^{P O}$-bridges of J in G. We modify each bridge fragment $G_{i}=B_{i} \cup J$ as follows: Let s_{P} and t_{P} be the left- and right-most vertices of attachment of B_{i} on P; and, similarly, s_{Q} and t_{Q}, on Q. Let $L_{0}, L_{1}, \ldots, L_{k}$ be its residual paths not containing s or t. G_{i}^{\prime} is derived from G_{i} by contracting the subpaths $\left.P \llbracket s ; s_{P} \rrbracket, Q \llbracket s ; s Q \rrbracket, P \llbracket t_{p} ; t \rrbracket, Q \llbracket t_{Q} ; t\right], L_{0}, L_{1}, \ldots, L_{\lambda}$ to single links, called a pseudo-edge(II) of the subpath. J^{\prime} is the circuit in G_{i}^{\prime} derived from J by the contraction. Since, each such G_{i}^{\prime} is a TYPE.III graph, by assumption, we can label the edges of G_{i}^{\prime} using the algorithm TYpe.III.

- STEP2. For each edge e of J, let $\left\{e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{n}^{\prime}\right\}$ be the set of edges of G_{i}^{\prime} such that e_{i}^{\prime} is the contraction of a subpath containinge. Then if any e_{i}^{\prime} is 'bidirectional' mark e 'bidirectional'. This step can be done in time $O(|E|)$,

Figure 6: Steps of the Algorithm Label-Type-II.
since, as it will be shown in Lemma 3.14 there are at most $4 \cdot|E|$ pseudo-edges(II).

- STEP 3. Let B_{i} and B_{j} be two interlacing $B^{P Q}$-bridges of J in G and s_{P} and i_{P} (respectively, s_{Q} and t_{Q}), their leftand right-most vertices of attachment on P (respectively, Q), distinct from s and t. Label the edges of the subpaths $P \llbracket s_{P} ; t_{P} \rrbracket$ and $Q \llbracket s_{Q} ; t_{Q} \rrbracket$ 'bidirectional'. This step can be done in time $O(|E|)$.
Lemma 3.9: Let B be a $B^{P Q}$-bridge of $J=P \cup Q$ in Type.II graph G and $e=[u, v]$, an edge of B. Let G^{\prime} be a subgraph of G derived from G by deleting all bridges except B and contracting the residual suhpaths as in the Algorithm LabeL-TYPE-II. Then there is a path from s to t in G traversing e in the order u, v if and only if there is a path from s to t in G^{\prime} traversing e in the same order.
PROOF. (\Leftrightarrow) Trivially trac, since G^{t} is a minor of G. (\Rightarrow) If $R \llbracket s ; t \rrbracket$ traverse e in the order u and v then we can write $R \llbracket s ; t \rrbracket$ as $R \llbracket s ; x \rrbracket * R \llbracket x ; y \rrbracket * R \llbracket y ; t \rrbracket$ such that $R \llbracket x ; y \rrbracket$ is a cross-cut of J, belonging to B and traversing e in the order u, v. If $x \in P \backslash\{s ; t]$ and $y \in Q \llbracket s ; t]$ then the path $P \llbracket s ; x \rrbracket * R \llbracket x ; y \rrbracket * Q \llbracket y ; t \rrbracket$ in G^{\prime} traverses e in the same order. Hence, assume that $x, y \in P \| s ; t \llbracket$. Since B is $B^{P Q}$.bridge it has a vertex of attachment $z \in Q \rrbracket s ; t \llbracket$. Using proposition 1.12, we can find simple paths from s to t such that they traverse e in either direction.

Lemma 3.10: Let B_{i} and B_{j} be two interlacing $B^{P Q}$. bridges of $J=P \cup Q$. Let s_{p} and t_{P} be the left- and right-most vertices of attachment of B_{i} and B_{j} on P distinct from s and t; and similarly s_{Q} and t_{Q} on Q. Then the edges of the residual paths $P \llbracket s_{P} ; t_{P} \rrbracket$ and $Q \llbracket s_{Q} ; t_{Q} \rrbracket$ are 'bidirectional'.

PROOF. (Cf. Figure 7.) Since B_{i} and B_{j} interlace, there exist two vertices of attachment a_{i} and b_{i} of B_{i} and two vertices of attachment a_{j} and b_{j} of B_{j}, all four distinct, such that a_{i} and b_{i} separate a_{j} and b_{j} in the circuit J. Let N_{i} be a cross-cut of J

Figure 7: Four Cases of the Lemma.3.10
in G between a_{i} and b_{i} belonging to B_{i}; and N_{j} between a_{j} and b_{j} belonging to B_{j}. The four residual paths $J \| a_{i} ; a_{j} \rrbracket, J \llbracket a_{j} ; b_{i} \rrbracket$, $J\left[b_{i} ; b_{j}\right]$ and $J \llbracket b_{j} ; a_{i} \rrbracket$ will be referred to as quadrants I, II, III and IV, respectively. The distinguished vertices s and t lie on J. Observe that if two $B^{P Q}$-bridges B_{i} and B_{j} interlace then it is always possible to choose four distinct vertices a_{i}, b_{i}, a_{j} and b_{j} such that s and t do not lie in the same quadrant.
Hence there are four cases to consider:

- CASE. $1 s$ is an internal vertex of quadrant I and t is an internal vertex of quadrant III. Let $J \llbracket s ; t \rrbracket$ in quadrants I, II and III be $P \| s ; t \rrbracket$ and $Q \llbracket s ; t \rrbracket$ its complement in J. Let a_{i}, b_{i}, a_{j} and b_{j} be modified such that a_{i} and a_{j} are the left-most vertices of attachment of B_{i} and \mathcal{B}_{j}, distinct from s, on Q and P respectively; and similarly, b_{i} and b_{j}, distinct from t. Accordingly, N_{i} and N_{j} are modified. Observe that s_{P} (respectively, s_{Q}) is distinct from a_{j} (respectively, \dot{a}_{i}) if and only if s_{P} is the left-most vertex of attachment B_{i} on P (respectively, s_{Q}, the left-most vertex of attachment B_{j} on Q), distinct from s. A similar observation can be made about t_{P} and t_{Q}.
Every edge of the residual paths $P \llbracket a_{j} ; b_{i} \rrbracket$ and $Q \llbracket a_{i} ; b_{j} \rrbracket$ is 'bidirectional'. The paths $P \llbracket s ; t \rrbracket$ and $Q \llbracket s ; a_{i} \rrbracket * N_{i} \llbracket a_{i} ; b_{i} \rrbracket * P \llbracket b_{i} ; a_{j} \rrbracket *$ $N_{j} \llbracket a_{j} ; b_{j} \rrbracket * Q \llbracket b_{j} ; t \rrbracket$ traverse the edges of $P \llbracket a_{j} ; b_{i} \rrbracket$ in cither direction. Similarly, for $Q \llbracket a_{i} ; b_{j} \rrbracket$.
If s_{p} and a_{j} are distinct then every edge of the path $P \llbracket s_{P} ; a_{j} \rrbracket$ is 'bidirectional'. Since s_{P} is a vertex of attachment of B_{i}, there is a cross-cut between s_{P} and b_{i}, say N_{i}^{\prime}. then the paths $P \llbracket s ; t \rrbracket$ and $\left.Q \llbracket s ; b_{j} \rrbracket * N \llbracket b_{j} ; a_{j} \rrbracket * P \llbracket a_{j} ; s_{P} \rrbracket * N_{i} \llbracket s_{P} ; b_{i} \rrbracket * P \llbracket b_{i} ; t\right]$ traverse the edges of $P\left[s_{p} ; a_{j}\right]$ in either directions. Similarly, for $P \llbracket b_{i} ; t_{P} \rrbracket, Q \llbracket s_{Q} ; a_{i} \rrbracket$ and $Q \llbracket b_{j} ; t_{Q} \rrbracket$.
-CASE. $2 s$ is an internal vertex of quadrant I and t, of quadrant $I I$. Let $J \llbracket s ; t \rrbracket$ in quadrants I and II be $P \llbracket s ; t \rrbracket$ and $Q \llbracket s ; t \rrbracket$ its complement in J. We may assume that $a_{j}=s_{P}=t_{P}$. Since, otherwise, we can reduce this case to an instance of the case(1). Since B_{i} is a $B^{P Q}$-bridge, a_{j} is also an attachment of B_{i}; and there are cross-cuts between a_{j} and $a_{i}\left(N_{i}^{\prime}\right)$ and betwcen a_{j}
and $b_{i}\left(N_{i}^{\prime \prime}\right)$. Let a_{i} and b_{i} be modified to be the left- and right-most vertices of attachment of B_{i} on Q, distinct from s and t, respectively. Accordingly N_{i} is modified. Observe that s_{Q} is distinct from a_{i} if and only if s_{Q} is the left-most vertex of attachment of B_{j} on Q distinct from s. A similar relation holds between is and b_{i}.
Every edge of the residual path $Q\left[a_{i} ; b_{j} \rrbracket\right.$ and $Q \llbracket b_{j} ; b_{i} \rrbracket$ is 'bidirectional'. The paths $Q \llbracket s ; t$ and $\Gamma \llbracket s ; a_{j} \rrbracket * N_{j} \llbracket a_{j} ; b_{j} \rrbracket * Q \llbracket b_{j} ; a_{i} \rrbracket *$ $\left.N_{i} \llbracket a_{i} ; b_{i} \rrbracket * Q \llbracket b_{i} ; t\right]$ traverse edges of $Q \llbracket a_{i} ; b_{j} \rrbracket$ in eithor directions. Similarly, for $Q\left[b_{j} ; b_{i}\right]$.
If s_{Q} and a_{i} are distinct, then every edge of $Q\left[s_{Q} ; a_{i}\right]$ is 'bidirectional'. Since s_{Q} is a vertex of attachment of B_{j}, there is a crosscut between s_{Q} and b_{j}, say N_{j}^{\prime}. The paths $Q[s ; t]$ and $P\left[s ; a_{j}\right] *$ $N_{i}^{\prime}\left[a_{j} ; a_{i} \rrbracket * Q \llbracket a_{i} \cdot s_{Q} \rrbracket * N_{j}^{\prime}\left[s_{Q} ; b_{j} \rrbracket * Q \llbracket b_{j} ; t \rrbracket\right.\right.$ traverse the edges of $Q\left[s_{Q} ; a_{i}\right]$ in cither directions. The subpath $Q \llbracket b_{i} ; t_{Q} \rrbracket$ is treated in a similar manner.
- CASE. $3 \quad s=a_{i}$ and t is an internal vertex of the quadrant $I I$. Let $J[s ; t]$ in quadrants I and II be $P \llbracket s ; t]$ and $Q \llbracket s ; t]$ be its complement in J. We may assume that $s_{P}=a_{j}$ and $s_{Q}=b_{j}$. Since, otherwise, we can reduce this case to an instance of the case(1) or case(2).
Since B_{i} is a $B^{P Q}$-bridge, it has a vertex of attachment b_{i}^{\prime} on $P \| s_{P} ; t_{P} \rrbracket$. Let b_{i} and b_{i}^{\prime} be modified to be the right-most vertices of attachment of B_{i} on P and Q, distinct from t. Accordingly N_{i} is modified. Moreover, there are cross-cuts between a_{i} and b_{i}^{\prime} (say, N_{i}^{\prime}) and between b_{i} and b_{i}^{\prime} (say, $N_{i}^{\prime \prime}$). Observe that t_{Q} is distinct from b_{i} if and only if t_{Q} is the right-most vertex of attachment of B_{j} distinct from t. A similar relation holds between t_{P} and b_{i}^{b}.

Every edge of the residual path $Q\left[b_{j} ; b_{i} \llbracket\right.$ is 'bidirectional'. The paths $Q \llbracket s ; t \rrbracket$ and $N_{i} \llbracket s ; b_{i} \rrbracket * Q \llbracket b_{i} ; b_{j} \rrbracket * N_{j} \llbracket b_{j} ; a_{j} \rrbracket * Q \llbracket a_{j} ; t \rrbracket$ traverse the edges of $Q\left[b_{j} ; b_{i}\right]$ in cither directions. If a_{j} and b_{i}^{\prime} are distinct then, similarly, every edge of $P \llbracket a_{j} ; b_{i}^{\prime}$ is 'bidirectional'.
If t_{P} and b_{i}^{\prime} are distinct then every edge of $P \llbracket b_{i}^{\prime}$; $t_{P} \llbracket$ is 'bidirectional'. Since t_{P} is a vertex of attachment of B_{j}, there is a cross-cut between a_{j} and t_{P} (say, N_{j}^{\prime}). The paths $P[s ; t]$ and $\left.I^{\prime} \llbracket s ; a_{j} \rrbracket * N_{j}^{\prime} \llbracket a_{j} ; t_{P} \rrbracket * P \llbracket t_{P} ; b_{i}^{\prime}\right\rceil * N_{i}^{\prime \prime} \llbracket b_{i}^{\prime} ; b_{i} \rrbracket * Q \llbracket b_{i} ; t \rrbracket$ traverse edges of $P \llbracket b_{i}^{\prime} ; t_{P} \rrbracket$ in either directions. Similarly, for $Q \llbracket b_{i} ; t_{Q} \rrbracket$.
-CASE. $4 \quad s=a_{i}$ and $t=b_{i}$. We may assume that $s_{P}=t_{P}=$ a_{j} and $s_{Q}=t_{Q}=b_{j}$. Since, otherwise, we can reduce this case to an instance of the case (3). Since the paths are cmpty, the theorem is trivially true in this case.
Theorem 3.11: Assume LABEL-TYPE-III correctly labels the edges of a TYPE.III graph. Then the algorithm LABEL-TYPE-II correctly labels a TYPE.II graph.
PROOF. Let e be an arbitrary edge of the Type. III graph G. Without loss of generality we may assume that e is an edge of the path P, and that there are no two intcrlacing bridges such that $e \in P\left[s_{P} ; t_{P}\right]$, as in the previous lemma. Otherwise the proof is immediate from the previous two lemmas.
We partition the set of $B^{P Q}$-bridges, B of J into following three disjoint subsets: $B_{1}=$ the set $B^{P Q}$-bridges whose vertices of attachment on P are to the left of $e ; B_{2}=$ the set $B^{I Q}$-bridges whose vertices of attachment on P are to the right of $e ; B_{3}=$ $B \backslash\left\{B_{1} \cup B_{2}\right\}$. Notice that no bridge of B_{i} interlaces with a bridge of B_{j}, (where $i, j=1,2,3$ and $i \neq j$); and B_{3} docs not contain a pair of interlacing bridges. If B_{3} is empty or if B_{3} contains

Figure 8: Steps of the Algorithm Label-Type-III.
two or more equivalent $B^{P Q}$ 3-bridges (Cf. Proposition 1.13) then it can be shown that $\ell(e)=\langle u, v\rangle$, if u is to the left of v on P. On the other hard, if $B_{3}=\left\{B_{3}\right\}$ is a singleton then the labelling of e is completely determined by the bridge fragment $J \cup B_{3}$.

3.5. Labelling a Type.III Graph

We assume that there is an algorithm called LABEL-TYPE-IV, to label the edges of a TYPE.IV graph. Algorithm LABEL-TYPE-III. (Cf. Figure 8.)
-STEP1. Let s_{P} and t_{P} be the left- and right-most vertices of attachment of B on P; and similarly, s_{Q} and t_{Q}, on Q. Let G^{\prime} be the subgraph derived from G by deliting the vertices s and t together with the edges incident on s and t and the subpaths $P \llbracket s ; s_{P} \rrbracket, Q \llbracket s^{\prime} s_{Q} \rrbracket, P \llbracket t_{P} ; t \rrbracket$ and $Q \llbracket t_{Q} ; t \rrbracket$. The vertices s_{P}, s_{Q} and the vertices of G^{\prime} adjacent to s in G are labelled σ; and the vertices t_{P}, t_{Q} and the vertices of G^{\prime} adjacent to t in G are labelled τ.
-STEP2. Find the nonseparable components of G^{\prime} and label each separation vertex v of each nonseparable component C as follows: v is labelled σ (respectively, τ), if there is a path from v to a vertex u, already labelled σ (respectively, τ), in the tree $T\left(G^{\prime}\right)$ of G^{\prime} and the path avoids C. This step can be done in time $O\left(\operatorname{size}\left(T\left(G^{\prime}\right)\right)\right)=O(|E|)$ using a depth first search.
-STEP 3. For each nonseparable component C, introduce two new vertices s_{C} and t_{C}; and join s_{C} (respectively, t_{C}) to all the vertices of C labelled σ (respectively, τ). We call the graph derived from the nonseparable component C, G_{C}; and the new edges, pseudo-edges (III). If G^{\prime} is
nonscparable then the graph derived from the nonseqarable component G^{\prime}, called $G^{\prime \prime}$, is a TYPE.IV graph and by assumption, we can label $G^{\prime \prime}$ using the algorithm Label-Type-IV. Otherwise, label the edges of the components by recursively calling the main algorithm with $\left(G_{C ;} ; s_{C}, t_{C}\right)$.
-STEP4. Edge $e=[u, v]$ on $\left.P\left[s ; s_{P}\right], Q \llbracket s ; s_{Q}\right], P\left[t_{P} ; t\right]$ and $Q \| t_{Q} ; t \rrbracket$ is labelled $\ell(e)=\langle u, v\rangle$, if u is to the left of v on P or Q. Edge $[s, u]$ incident on s is labelled $\ell([s, u])=$ $\langle s, u\rangle$ and edge $[u, t \underline{i}$ incident on t is labelled $\ell([u, t])=$ $\langle u, t\rangle$.
Lemma 3.12: Let C be a nonseparable component of G^{\prime} whose separation vertices are labelled σ or τ (or both), and let e be an arbitrary edge of C. Then there is a simple path R from s to t in G traversing e in the order u, v if and only if there are two distinct separation vertices a and b in C such that (i) Label of a is σ; and label of b is τ. (ii) There is a simple fath R^{\prime} joining a and b in C; and R^{\prime} traverses e in the same order.

PROOF. (\Leftrightarrow) By labolling of the separation vertices in the tree $T\left(G^{\prime}\right)$ of G^{\prime}, there are simple path $N_{1}[s ; a]$ and $N_{2}[\xi ; t]$ in G such that N_{1} and N_{2} are vertex disjoint and do not belong to C. The path $R \llbracket s ; t \rrbracket=N_{1} \llbracket s ; a \rrbracket * R^{\prime} \llbracket a ; b \rrbracket * N_{2}[b ; t \|$ in G, is simple and traverses in the same order as R^{\prime}. (\Rightarrow) Let $R[s ; t]$ traverse e in the order u and v and let e belong to the nonseparable component C. Then $R[s ; t]$ can be written as $R \llbracket[s ; a] * R[a ; b] *$ $R[b ; t]$, where a and b are two distinet separation vertices of C. Let R^{\prime} in C be the subpath $R[a ; b]$. R^{\prime} traverses the edge e in the same order as R in G. Moreover, the path $R[s ; a]$ induces a path in the tree $T\left(G^{\prime}\right)$ such that it joins a to some vertex lahelled σ and the path avoids C. Hence the separation vertex is labelled σ. Similarly the separation vertex b is labelled τ.

Theorem 3.13: Assume that LABEL-TYPE-IV correctly labels the edges of a TYPE.IV g aph. Then the algorithm Label-Type-lil correctly labels the edges of a TYpe.II graph.

PROOF. By induction on the size of the graph and the Lemma 3.12 .

3.6. Labelling a Type.IV Graph

Theorem 3.14: Suppose we have an Algorithm LABEL-TYPE-IV that correcily labels the edges of a Type.IV graph in time $O(T(|E|,|V|)) \geq O(|E| \cdot|V|)$, where T is a monotonic nondecreasing function in $|E|$ and $|V|$. Then the set of mutually recursive algorithms, LABELGraph, Label-Type-I, Label-Type-II and Label-TYPE-III, correctly labels the edges of an undirected connected strict graph in time $O(T(|E|,|V|)+|E| \cdot|V|)$
PROOF. (1) Follows immeciately from the Theorems 3.5, 3.8, 3.11 and 3.13
(2) The set of mutually recursive algorithms works as a Divide-and-Conguer algorithm: and cach divide step and conquer step takes $O\left(|E|+\left|p E^{\prime}\right|\right.$, where $|p E|=$ the number of pseudo-edges introduced at cach stage. Since cach 'divide' stop reduces the mumber of verticos of the subgraph by at least one, there can
be at most $O(|V|)$ stages of 'divide' stages before the graph is divided into a set of Type.IV graphs.
Claim. The total number of pscudo-edges in all the subgraphs that are produced at the end of each stage, $|p E|=O(|E|)$.
Proof of the Claim. Let G^{\prime} be a subgraph produced at some stage. We define three functions f_{1}, f_{2} and f_{3} such that f_{2} maps at most four distinct pseudo-edges(II) of G^{\prime} to exactly one graph-edge, f_{3} maps at most four distinct pseudo-edges(III) to exactly one graph-edge, and f_{1} is an injective function mapping a pseudo-edge(I) to a graph-edge or a pseudo-cdge(III). Since the graph-edges of the subgraphs are disjoint, the claim follows. If e^{\prime} is a pseudo-edge, incident on a vertex v of G^{\prime} then there must be $B^{P Q_{-b r i c g e ~ o f ~}} G^{t}$ with a vertex of attachinent at v. Let e be the edge of the $B^{P Q}$-bridge, incident at v. Define $f_{2}\left(e^{\prime}\right)=e$. Since f_{2} maps at wost four distinct pseudo-edges (II) of G^{\prime} to one graph-edge of G^{\prime}, and since the graph-edges of the subgraphs are disjoint, the total number of pseudd-edges(II), $\left|p E^{\mathrm{II}}\right| \leq 4 \cdot|E|$. If e^{\prime} is a pseudo-edge(III), incident at a vertex v of G^{\prime}, then since v is one of $s_{P}, t_{P}, s_{Q}, t_{Q}$, a vertex adjacent to s or t, or a separation vertex of a component then there must be graphedge e that is also incident on v. Define $f_{3}\left(e^{\prime}\right)=e$. Since f_{3} maps at most four pseudo-edges(III) of G^{\prime} to exactly one graphedge, the total number of pseudo-edges(III), $\left|p E^{\mathrm{III}}\right| \leq 4 \cdot|E|$. We define a injective function f_{1} that maps a pseudo-edge(I) to a graph-edge or a pseudo-edge(III). Let \mathbf{B}_{i} be a block with the associated vertices s_{i} and t_{i} and J_{i}, the ambitus of B_{i}, containing both s_{i} and t_{i}. Let $e^{i}=\left[s_{i}, t_{i}\right]$ be the pseudo-edge(I) and let e be an edge of J_{i} incident on t_{i} but not belonging to J. Define $f_{1}\left(e^{\prime}\right)=e$. It is easy to show that f_{1} is one-one and hence, the total number of pseudo-edges(I), $\left|p E^{T}\right| \leq 5 \cdot|E|$. Summing the number of pseudo-edges, we obtain $\left|p E^{\mathrm{I}}\right|+\left|p E^{\mathrm{II}}\right|+$ $\left|p E^{\mathrm{III}}\right| \leq 13 \cdot|E| . \quad$ (End of the Claim.)

Hence, the algorithms spend $O(|E| \cdot|V|)$ time to rednce the graph G into set of Type. IV sulbrewhs. Since cach Type.IV subgraph has less than $|V|$ vertices, and since the total number of edges is $O(|E|)$, the theerein follows.

Theorem 3.15: Let G be a Type.IV graph and G^{\prime}, the subgraph derived from G by deleting s and together with their incident edges. Let B be the $B^{P Q}$-bridge of G. Then every edge e of B not incident on s or t is 'bidirectional.'

PROOF. Observe that there exist vertices of attachuent of B, x on $P \llbracket s ; t \llbracket$ and y on $Q \llbracket s ; t \llbracket$ such that there is a cross-cut N between x and y coutaining e. (This is a consequence of proposition 1.12 and the nonseparability property of G^{\prime}.) The two paths $\Gamma \llbracket s ; x \rrbracket * N \llbracket x ; y \rrbracket * Q \llbracket y ; t \rrbracket$ and $Q \llbracket s ; y \rrbracket *(N \llbracket x ; y \rrbracket)^{\mathrm{R}^{*}}$ $\Gamma\lfloor x ; t$ thraverse e in either directions.

Every edge $[s, u]$ incident on s is labelled $\langle s, u\rangle$ and every edge $[u, t]$ incident on t, labelled $\langle u, t\rangle$. All other edges of the $B^{P Q}$-bridge are labelled 'bidirectional.' Hence, we can label all but the edges on P and Q of a Type.IV graph in $O(|E|)$ time. But, each edge of $P \llbracket s_{P} ; t_{P} \rrbracket$ and $Q\left[s_{Q} ; t_{Q} \rrbracket\right.$ can be labelled in $O(|E| \cdot|V|)$ time, asing an algorithm for Two-Disjoint-Path problem. Since there are at most $|V|$ such odges, this step can be done in $O\left(|E| \cdot|V|^{2}\right)$ time, thas, yielding an $O\left(|E| \cdot|V|^{2}\right)$ labelling algorithm for the general graph.

4. An Efficient Algorithm.

We sketch an algorithm to label the edges of the subpath $P \llbracket s_{P} ; t_{P} \rrbracket$ and $Q \llbracket s_{Q} ; t_{Q} \rrbracket$ of a TYPE.IV graph, G, in $O(|E| \cdot|V|)$ time. Recall that this will provide an $O(|E| \cdot|V|)$ time algorithm for a general graph. (Cf. Theorems 3.14.) The algorithm makes use of many special properties of a bridge and its proofs of correctness are rather complicated. These will be supplied in the author's thesis.

4.1. U-Fragment

Before we describe the main algorithm, we introduce the notion of a U-Fragment and sketch an algorithm to find certain pairs of disjoint cross-cuts in it.
Definition 4.1: A U-Fragment and \bar{U}-Fragmert are defined inductively on the structure of a TYPE.II graph as follows:

- A Type.II graph is called a U-Fragment, with $B_{2}=$ its set of $B^{P Q}$-bridges. Its upper and lower external vertices of attachment are empty sets.
-Let U be a U-Fragment consisting of the circuit $J=$ $P \cup Q$ and let B be a $B^{P Q}$.bridge of U. Let the left-most and the right-most vertices of attachment of B on $Q \llbracket s ; t \rrbracket$ be the distinct vertices s^{\prime} and t^{\prime}. Let R be a path in B, connecting s^{\prime} and t^{\prime} and decomposing B into following sets of bridges with respect to $\{P\} \cup\{Q\} \cup\{R\}: B_{1}=$ the set of bridges with vertices of attachment on $P \rrbracket s ; t \llbracket$ and on $R \rrbracket s^{\prime} ; t^{\prime} \llbracket ; B_{2}=$ the set of bridges with vertices of attachment on $R \rrbracket s^{\prime} ; t^{\prime}\left[\right.$ and $Q \rrbracket s^{\prime} ; t^{\top} \mathbb{F}$; and the set of bridges with vertices of attachment solely on R and avoiding B_{1} and B_{2}.
The subgraph $\left.U^{\prime}=\left\{R \llbracket s^{\prime} ; t^{\prime}\right]\right\} \cup\left\{Q\left[s^{\prime} ; t^{\prime}\right]\right\} \cup B_{2}$ of U, is called a U-Fragment of U on Q. The vertices of attachment of B_{1} on $R \rrbracket s^{\prime} ; t^{\prime} \llbracket$ are called its upper external vertices of attachment, UA and the lower external vertices of attachment of U lying on $Q \rrbracket s^{\prime} ; t^{\prime} \llbracket$, its lower external vertices of attachment, LA.
The subgraph $\left.\bar{U}^{\prime}=\left\{R \llbracket s^{\prime} ; t^{\prime}\right]\right\} \cup\{P[s ; t\rceil\} \cup B_{1}$ of U, is called a complementary U-Fragment (simply \bar{U}-Fragment) of U on Q. The external vertices of attachment of U lying on $P \rrbracket s ; t \llbracket$ are called its upper external vertices of attachment, $U A$, and the vertices of attachment of B_{2} on $R \rrbracket s^{\prime} ; t^{\prime} \llbracket$ together with the vertex s^{\prime} (if s^{\prime} is distinct from s) and the vertex t^{\prime} (if t^{\prime} is distinct from t), its lower external vertices of attachment, LA.
The U- and \bar{U}-Fragments of an $\overline{\mathrm{U}}$-Fragment are defined in an identical manner.
Notation: Let U be a U- or a $\tilde{\mathrm{U}}$-Fragment. Let the left- and right-most upper attachments on P (respectively, Q) be s_{U} and t_{U} (respectively, s_{L} and t_{L}.) Let B be a $B^{P Q}$-bridge of U and let the left- and right-most vertices of attachment of B on $P[s ; t]$ be s_{P}^{B}, t_{P}^{B}, and those on $Q \llbracket s ; t \rrbracket$ be s_{Q}^{B} and t_{Q}^{B}. Similarly, let the left- and right-most vertices of attachment of \dot{B} on $P \rrbracket s ; t[$ be
s_{P} and t_{P}, and those on $Q \| s ; t\left[\right.$ be s_{Q} and t_{Q}. We consider the bridge B angmented with the paths as follows: Let the modified bridge be $D \cup P \llbracket s_{P}^{B} ; t_{P}^{B} \rrbracket \cup Q \llbracket s_{Q}^{B} ; t_{Q}^{B} \rrbracket$. If $s_{P}^{B}=s_{Q}^{B}=s$ then label the vertex with ' s ', and if $t_{P}^{D}=t_{Q}^{B}=t$ then label the vertex with ' t.' By an abuse of notation, we also refer to the modified bridge as the bridge, B.
Definition 4.2: A U-Fragment, U^{\prime}, of U (a U - or a \bar{U} Fragment) on Q is said to be a Feasible U-Fragment, if it satisfies at least one of the following two conditions:

1. $|\mathrm{LA}|>0$ and $|\mathrm{UA}|>0$.
2. (i) $|\mathrm{LA}|=0$; (ii) not all the vertices of attachment of B_{2} on P^{\prime} belong to $P^{\prime} \rrbracket s^{\prime} ; s_{U} \rrbracket$ or to $P^{\prime} \llbracket t_{U} ; t^{\prime} \rrbracket$; and (iii) there exist two vertex disjoint paths in B_{1}, $R_{a} \llbracket a^{\prime} ; a \rrbracket$ and $R_{b} \llbracket b^{\prime} ; b \rrbracket$, where $R_{a}\left(R_{b}\right)$ meets $P \rrbracket s ; t \llbracket$ only in a (b) and meets $\left.P^{\prime}\right] s^{\prime} ; t^{\prime}\left[\right.$ only in $a^{\prime}\left(b^{\prime}\right)$.
Definition 4.3: A U-Fragment, \bar{U}^{\prime}, of U (a U- or a $\tilde{\mathrm{U}}$ Fragment) on Q is said to be a Feasible \bar{U}-Fragment, if $|\mathrm{LA}|>0$ or $|\mathrm{UA}|>0$.

Henceforth, it will be implicitly assumed that U-Fragment and \bar{U}-Fragment are found using the following conventions:
Convention 4.4: Let U^{\prime} be a U - or \bar{U}-Fragment with the $B^{P Q}$-bridge B.

- $s_{P}^{B}=t_{P}^{B}$ and $s_{Q}^{B}=t_{Q}^{B}$. Then B may be discarded.
$\bullet s_{P}^{B}=t_{P}^{B}$ and s_{Q}^{B} and t_{Q}^{B} are distinct. If there is a lower vertex of attachment $\left.b \in Q^{\prime}\right] s_{Q}^{B} ; t_{Q}^{B} \llbracket$ then the U - and $\overline{\mathrm{U}}$ Fragment in B are on Q. Otherwise, B is discarded.
* s_{P}^{B} and t_{P}^{B} as well as s_{Q}^{B} and t_{Q}^{B} are distinct. (a) (U^{\prime} is a U-Fragment satisfying 1. of definition 4.2.) If B has no lower attachment on $Q^{\prime} \rrbracket s_{Q}^{B} ; t_{Q}^{B} \rrbracket$, but has an upper attachment on $P^{\prime} \rrbracket s_{P}^{B} ; t_{P}^{B} \llbracket$ then the U - and $\overline{\mathrm{U}}$-Fragment in B are on Q. Similarly, with P and Q interchanged. (b) (U^{\prime} is a U-Eragment of U on Q satisfying 2. of definition 4.2.) The U- and \bar{U}-Fragment in B are on $Q .(c)\left(U^{\prime}\right.$ is a \bar{U} Fragment of U on Q.) The U - and $\overline{\mathrm{U}}$-Fragment in B are on Q. Otherwise, the U- and \bar{U}-Fragment are on P or Q, the choice being arbitrary.

Definition 4.5: (Cf. Figure 9.) Let U be a U-Fragment. -Two vertex-disjoint cross-cuts $N_{1} \llbracket x_{P} ; x_{Q} \rrbracket$ and $N_{2} \llbracket y_{P} ; y_{Q} \rrbracket$ are said to be a $P Q$-Cross-Cut Pair, if: (1) $x_{P}, y_{P} \in$ $P \rrbracket s ; t \llbracket$ and x_{P} is to the left of $y_{P} ;$ (2) $x_{Q}, y_{Q} \in Q \rrbracket s ; t \llbracket$ and x_{Q} is to the right of y_{Q} and (3) if $|\mathrm{LA}|=0$ or if $x_{Q}, y_{Q} \in Q \rrbracket s ; s_{L} \rrbracket$ then $|\mathrm{UA}|>0$ and not both x_{P} and y_{P} belong to $P \llbracket s ; s_{U} \rrbracket$; and similarly, if $|\mathrm{LA}|=0$ or if x_{Q}, $y_{Q} \in Q \llbracket t_{L} ; t \mathbb{I}$ then $|\mathrm{UA}|>0$ and not both x_{P} and y_{P} belong to $P \llbracket t_{U} ; t \llbracket$. (Or, with UA and LA interchanged.)
-Two vertex-disjoint cross-cuts $N_{1} \llbracket s ; t \rrbracket$ and $N_{2} \llbracket x_{P} ; x_{Q} \rrbracket$ are said to be an ST-Cross-Cut Pair, if: (1) $x_{P} \in P \rrbracket s ; t \llbracket$ and $x_{Q} \in Q \rrbracket s ; t \llbracket ;$ (2) there are an upper attachment on $P \rrbracket s ; t \llbracket$ and a lower attachment on $Q \rrbracket s ; t \llbracket$.
-Two vertex-disjoint cross-cuts $N_{1} \llbracket x_{P}^{\prime} ; x_{P}^{\prime \prime} \rrbracket$ and $N_{2} \llbracket y_{P} ; y_{Q} \rrbracket$ are said to be a P-Cross-Cut Pair, if: (1) $x_{P}^{\prime}, x_{P}^{\prime \prime} \in P \llbracket s ; t \rrbracket$ and at least one of them is distinct from s and t; (2)

Figure 9: $P Q-, S T-, P$ - and Q-Cross-Cut Pairs.
$y_{P} \in P \rrbracket x_{P}^{\prime} ; x_{P}^{\prime} \llbracket$ and $y_{Q} \in Q \rrbracket s ; t \rrbracket$; and (s) there is an upper attachment $c^{\prime} \in P \rrbracket x_{P}^{\prime} ; x_{P}^{\prime \prime} \llbracket$.
A Q-Cross-Cut-Pair is defined similarly.
The Cross-Cut Pairs of U-Fragments and bridges are defined similarly. Now, we present an algorithm to find a $P_{-}, Q_{-}, P Q$ - or $S T$-Cross-Cut Pair in a U-Fragment.

Algorithm ANALYZE-U-FRAGMENT.

-STEP1. First, check the interlacing bridges of B_{2} to determine if the required cross-cut pairs exist. If so, return 'YES'. In the next step, analyze each bridge of B_{2} for the cross-cut pairs. If the answer is 'YES' for any B_{2} bridge, return 'YES'; otherwise, return 'NO'.
-STEP2. Let $B \in B_{2}$. If the vertices of attachment of B on P belong to $P \rrbracket s ; s_{U} \rrbracket$ and those on Q belong to $Q \rrbracket s ; s_{L} \rrbracket$ (or. symmetrically, if those on P belong to $P \llbracket t_{U} ; t \llbracket$ and those on Q belong to $Q \llbracket t_{L} ; t \mathbb{)}$ then B can not have the required cross-cut pairs and is discarded. Otherwise, analyze each single bridge using the algorithm Analyze-Bridge.

Algorithm ANALYZE-BRIDGE(B) :

begin
DIVIDE : Find a path R in B following the convention 4.4. Modify R such that the bridges with vertices of attachment solely on R avoid other bridges. Let B_{1} and B_{2} be as in the definition 4.1 and let B_{3} be the set of bridges with vertices attachment on $P \llbracket s_{F}^{E} ; t_{P}^{B} \rrbracket, R \rrbracket s_{Q}^{B} ; t_{Q}^{B} \mathbb{1}$ and $Q \rrbracket s_{Q}^{B} ; t_{Q}^{B} \mathbb{I}$
if TEST-AND-MODIFY (B) returns 'YES' then
if $\left|B_{3}\right| \neq 0$ then return 'YES' else goto RECUR;
else goto UbAR;

RECUR :Let U be the U-Fragment formed by the paths P, R and the bridges B_{2}.
if U is marked feasible then
if Analyze-U-FRAGMENT(U) returns 'Yes' then returu 'YES';

UBAR : [Analyze the set of B_{1}-bridges:]
Analyze bridges B_{1} to determine if it has the required Cross-Cut pairs. If so, return 'YES'.
[Analyze each bridge $B^{\prime} \in B_{1}$:]
Let the left- and right-most lower attachments of the $\overline{\mathrm{U}}$ Fragment on R be s_{L}^{\prime} and t_{L}^{\prime}.
If the vertices of attachment of B^{\prime} on P belong to $\left.P \backslash s ; s_{U}\right]$ and those on R belong to $R \rrbracket s ; s_{L}^{\prime} \rrbracket$ (or symmetrically, if those on P belong to $P\left[t_{U} ; t \llbracket\right.$ and those on R belong to $\left.R \llbracket t_{L}^{\prime} ; t \mathbb{1}\right)$ then discard $B^{\prime} ;$
if ANALYZE-BRIDGE (B ')returns 'YES' then return 'YES';
return 'NO';
end.

Algorithm TEST-AND-MODIFY.

\bullet STEP 1. Check if B has a lower vertex of attachment on $Q \| s_{Q}^{B} ; t_{Q}^{B} \llbracket$. Then, if $\left|B_{3}\right| \neq 0$ then return 'YES'. If $\left|B_{3}\right|=0$ then mark U 'feasible' and return 'YES'. Otherwise, go to the next step.
-STEP2. Let the left- and right-most vertices of attachment of B_{1} and B_{3} bridges on R be s_{R}^{\prime} and t_{R}^{\prime} (and if $\left|B_{3}\right|=0$ then those on $Q \rrbracket s_{Q}^{B} ; t_{Q}^{B} \mathbb{L}$ be s_{Q}^{\prime} and $\left.t_{Q}^{\prime}.\right)$ Let G_{B} be the subgraph of B obtained by deleting the followings: (i) the bridges B_{2}, (ii) the vertices s_{Q}^{B} and t_{Q}^{B} together with the edges incident on them, (iii) the subpaths $R \llbracket s_{Q}^{B} ; s_{R}^{\prime} \rrbracket$ and $R \llbracket t_{R}^{\prime} ; t_{Q}^{B} \rrbracket$, (iv) the subpath $Q \llbracket s_{Q}^{B} ; t_{Q}^{B} \rrbracket$, if $\left|B_{3}\right|=0$ (or the subpaths $Q \llbracket s_{Q}^{B} ; s_{Q}^{\prime} \rrbracket$ and $Q \llbracket t_{Q}^{\prime} ; t_{Q}^{B} \rrbracket$, if $\left|B_{3}\right| \neq 0$.) The vertices of G_{B} adjacent to s_{Q}^{B} are labelled σ; those adjacent to t_{Q}^{B}, τ; the vertices s_{R}^{\prime} and t_{R}^{\prime}, ρ; and the vertices s_{Q}^{\prime} and t_{Q}^{\prime}, χ.
-STEP3. Find the nonseparable components of G_{B} and let the component containing the path $P \llbracket s_{P}^{B} ; t_{P}^{B} \rrbracket$ be called C_{π}. Let each separation vertex of C_{π} be labelled as follows: the separation vertex v is labelled σ (respectively, τ, ρ or χ) if there is a path from v to a vertex u, already labelled σ (respectively, τ, ρ or χ) in the tree $T\left(G_{B}\right)$ of G_{B} and the path avoids C_{π}.
-STEP4 If $\left|B_{3}\right| \neq 0$ and C_{π} has two distinct vertices one labelled ρ and the other labelled χ then return 'YES'. If $\left|B_{3}\right| \doteq 0$ and C_{π}^{\prime} has two distinct vertices labelled ρ then check if U satisfies 2(ii) of definition 4.2. If so, mark U 'feasible' and return 'YES'.

Otherwise, modify the bridge B to form a \bar{U}-Fragment as follows: Delete all the edges of the bridge except the ones in C_{π}; Adjoin the separation vertex of C_{π}, labelled ρ, to s_{Q}^{B} and t_{Q}^{B} with new edges; And adjoin the separation vertices of C_{π}, labelled σ (respectively, τ) to s_{Q}^{B} (respectively, t_{Q}^{B}). Let the path from s_{Q}^{B} to t_{Q}^{B}, touching the vertex labelled ρ, be R and $B_{1}{ }^{\prime}$, the set of bridges with vertices of attachment only on P and R. Return the modified graph as the \bar{U}-Fragment.

4.2. Labelling the Path

We present an algorithm to label the path P of a Type.IV grapin, G, in $O(|E| \cdot|V|)$ time. By using the algorithm twice (once for P and once for Q), it is possible to label the paths of G in $O(|E| \cdot|V|)$ time. In this section, we only sketch the algorithm for the case when the bridge B of G has its vertices of attachment s_{Q}^{B} and t_{Q}^{B} distinct from each other and from s and t. The other cases are similar, but slightly more complicated; and will appear in the full paper.

```
Algorithm LABEL-PATH \((P, B)\) :
begin
DIvide : Find a path \(R\) in \(B\) joining \(s_{Q}^{B}\) and \(t_{Q}^{B}\), with \(B_{1}, B_{2}\)
and \(B_{3}\) as in the algorithm Analyze-Bridge.
if Test-and-Modify \((B)\) returns ' yes ' then
    if \(\left|B_{3}\right| \neq 0\) then label the edges of \(P \| s_{p} ; t_{P} \rrbracket\)
                    'bidirectional' and return 'YEs';
    else goto Recur;
    else goto Ubar;
```

 Recur :Let \(U\) be the U-Fragment as in Analyze-Bridge
 if U is marked feasible then
if Analyze- U - Fragment (U) returns 'yes' then
label the edges of $P \llbracket s_{P} ; t_{P} \rrbracket$ 'bidirectional' and
return 'yes';

Ubar :[Analyze the set of B_{1}-bridges:]
Analyze the blocks of interlacing bridges of \bar{B}_{1} to label the edges of the path $P \llbracket s_{P} ; t_{P} \rrbracket$, as in Label-Type-II;
Also, determine if they have the required Cross-Cut pairs. If so, label the edges of $P \llbracket s_{P} ; t_{P} \rrbracket$ 'bidirectional' and return 'Yes';
[Analyze each bridge $B^{\prime} \in B_{1}$]
-- We analyze each bridge B^{\prime} to label the subpaths
$-P\left[s_{P}^{B^{\prime}} ; t_{P}^{B^{\prime}} \rrbracket\right.$ (recursively), as well as to find if it has the

- - required cross-cut pairs, using Label-Path;
if Label-Path (P, B^{\prime}) returns 'Yes' then label the edges of $P \llbracket s_{P} ; t_{P} \rrbracket$ 'bidirectional' and return 'YES';
return 'NO';
end .
Notice that the algorithm uses Divide-and-Conquer paradigm: Each 'divide' step involves finding a path in a bridge, where the path has additional properties that the bridges with vertices of attachment solely on the path avoid B_{1}, B_{2} and B_{3}. This can be done in $O(|E|+|p E|)$ time by combining DFS technique with the ambitus-finding algorithm. ($p E=$ the pseudo-edges introduced in the step 4 of TEST-AND-MODIFY.) Each 'conquer' step involves analyzing intcrlacing bridges for appropriate crosscut pairs, which can be done in linear time, and analyzing each individual bridge (recursively). However, each 'divide' step reduces the number of vertices of the subgraph by at least one, and hence the algorithm takes $O((|E|+|p E|) \cdot|V|)$ time. But, again, it can be shown that the number of pseudo-edges introduced is $O(|E|)$, thus, giving an $O(|E| \cdot|V|)$ time algorithm.

The proof of correctness involves two parts: In part 1, we show, by induction on the structure of the U - and $\overline{\mathrm{U}}$ Fragments, that when the algorithm claims the existence of certain disjoint paths, such paths, in fact, exist; In part 2, we show by using' U-Fragments as gadgets, that when the algorithm fails to muster enough evidence for the existence of certain disjoint paths, it is only when no such paths exist.

REFERLNCES

[1] A.V.Aho, J.E.Hopcroft and J.D.Ullman, The Design and Analysis of Computer Algorithms, AddisonWesley, Reading, MA, 1974.
[2] D.Brand, "Detecting Sneak Paths in Transistor Networks", IBM Thomas J. Watson Research Center, Yorktown Heights, N. Y., 1983.
[3] S.Even, Graph Algorithms, Computer Science Press, Maryland 1979.
[4] S.Even and R.E.TarJan, "Network Flow and Testing Graph Connectivity", SIAM Journal of Computing, Vol. 4, No. 4, December 1975.
[5] E.Frank, A Data Driven Multiprocessor for Switch Level Simulation of VLSI Circuits., Ph. D. Thesis (in preparation), 1984.
[6] J.Hopcroft and R.TarJan, "Efficient Planarity Testing", Journal of the Association for Computing Machinery, Vol. 21, No. 4, October 1978.
[7] T.Ontsuki, "The Two Disjoint Path Problem and Wire Routing Design", in Graph Theory and Algorithms (Eds. N.Saito, T.Nishizeki), Springer 108, October 1980.
[8] Y. Perl and Y.Shiloach, "Finding Two Disjoint Paths Between Two Pairs of Vertices in a Graph", Journal of the Association for Computing Machinery, Vol. 25, No. 1, January 1978.
[9] P.D.SEYMOUR, "Disjoint Paths in Graphs", Discrete Mathematics, Vol. 29, No. 3, March 1980.
[10] Y.Shiloach, "A Polynomial Solution to the Undirected Two Paths Problem", Journal of the Association for Computing Machinery, Vol. 27, No. 3, July 1980.
[11] R.TARJAN, "Depth-First Search and Linear Graph Algorithms", SIAM Journal of Computing, Vol. 1, No. 2, June 1972.
[12] R.E.TARJAN, Data Structures and Network Algorithms, Society for Industrial and Applied Mathematics, Philadclphia, Pa., 1983.
[13] W.T.Tutte, "Bridges and Hamiltonian circuits in planar graphs", Aequationes Mathematicae, 15, 1977.
[14] W.T.TUTTE, Graph Theory, Addison-Wesley Publishing Company, Menlo Park, California, 1984.

[^0]: Figure 5: Steps of the Algorithm Label-Type-I.

