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INTRODUCTION

Computational and quantitative real algebraic geometry studies various algorithmic
and quantitative questions dealing with the real solutions of a system of equalities,
inequalities, and inequations of polynomials over the real numbers. This emerging
field is largely motivated by the power and elegance with which it solves a broad
and general class of problems arising in robotics, vision, computer-aided design,
geometric theorem proving, etc.

The algorithmic problems that arise in this context are formulated as decision
problems for the first-order theory of reals and the related problems of quantifier
elimination (Section 38.1), as well as problems of computing topological invariants
of semi-algebraic sets. The associated geometric structures are then examined via
an exploration of the semialgebraic sets (Section 38.2). Algorithmic problems for
semialgebraic sets are considered next. In particular, Section 38.3 discusses real
algebraic numbers and their representation, relying on such classical theorems as
Sturm’s theorem and Thom’s Lemma (Section 38.3). This discussion is followed by
a description of semialgebraic sets using the concept of cylindrical algebraic decom-

position (CAD) in both one and higher dimensions (Sections 38.4 and 38.5). This
concept leads to brief descriptions of two algorithmic approaches for the decision
and quantifier elimination problems (Section 38.6): namely, Collins’s algorithm
based on CAD, and some more recent approaches based on critical points tech-
niques and on reducing the multivariate problem to easier univariate problems.
These new approaches rely on the work of several groups of researchers: Grigor’ev
and Vorobjov [Gri88, GV88], Canny [Can87, Can90], Heintz et al. [HRS90], Rene-
gar [Ren91, Ren92a, Ren92b, Ren92c], and Basu et al. [BPR96]. In Section 38.7
we describe certain mathematical results on bounding the topological complexity
of semi-algebraic sets, and in Section 38.8 we discuss some algorithms for com-
puting topological invariants of semi-algebraic sets. In Section 38.9 we describe
some quantitative results from metric semi-algebraic geometry. These have proved
useful in applications in computer science. In Section 38.10 we discuss the connec-
tion between quantitative bounds on the topology of semi-algebraic sets, and the
polynomial partitioning method that have gained prominence recently in discrete
and computational geometry. Finally, we give a few representative applications of
computational semi-algebraic geometry in Section 38.11.
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38.1 FIRST-ORDER THEORY OF REALS

The decision problem for the first-order theory of reals is to determine if a
Tarski sentence in the first-order theory of reals is true or false. The quantifier

elimination problem is to determine if there is a logically equivalent quantifier-free
formula for an arbitrary Tarski formula in the first-order theory of reals. As a result
of Tarski’s work, we have the following theorem.

THEOREM 38.1.1 [Tar51]

Let  be a Tarski sentence. There is an e↵ective decision procedure for  .

Let  be a Tarski formula. There is a quantifier-free formula � logically equiv-
alent to  . If  involves only polynomials with rational coe�cients, then so
does the sentence �.

Tarski formulas are formulas in a first-order language (defined by Tarski in
1930 [Tar51]) constructed from equalities, inequalities, and inequations of poly-
nomials over the reals. Such formulas may be constructed by introducing logical
connectives and universal and existential quantifiers to the atomic formulas. Tarski
sentences are Tarski formulas in which all variables are bound by quantification.

GLOSSARY

Term: A constant, variable, or term combining two terms by an arithmetic opera-
tor: {+, �, ·}. A constant is a real number. A variable assumes a real number as
its value. A term contains finitely many such algebraic variables: x

1

, x
2

, . . . , xk.

Atomic formula: A formula comparing two terms by a binary relational oper-
ator: {=, 6=, >, <, �, }.

Quantifier-free formula: An atomic formula, a negation of a quantifier-free
formula given by the unary Boolean connective {¬}, or a formula combining two
quantifier-free formulas by a binary Boolean connective: {), ^, _}. Example:
The formula (x2 � 2 = 0) ^ (x > 0) defines the (real algebraic) number +

p
2.

Tarski formula: If �(y
1

, . . ., yr) is a quantifier-free formula, then it is also a
Tarski formula. All the variables yi are free in �. Let �(y

1

, . . ., yr) and  (z1,
. . ., zs) be two Tarski formulas (with free variables yi and zi, respectively); then
a formula combining � and  by a Boolean connective is a Tarski formula with
free variables {yi} [ {zi}. Lastly, if Q stands for a quantifier (either universal 8
or existential 9) and if �(y

1

, . . . , yr, x) is a Tarski formula (with free variables x
and y

1

, . . . , yr), then
⇣

Q x
⌘ h

�(y
1

, . . . , yr, x)
i

is a Tarski formula with only the y’s as free variables. The variable x is bound
in (Q x)[�].

Tarski sentence: A Tarski formula with no free variable.
Example: (9 x) (8 y) [y2 � x < 0]. This Tarski sentence is false.
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Prenex Tarski formula: A Tarski formula of the form
⇣

Q x
1

⌘ ⇣

Q x
2

⌘

· · ·
⇣

Q xk

⌘ h

�(y
1

, y
2

, . . . , yr, x1

, . . . , xk)
i

,

where � is quantifier-free. The string of quantifiers (Q x
1

) (Q x
2

) · · · (Q xk) is
called the prefix and � is called the matrix .

Prenex form of a Tarski formula,  : A prenex Tarski formula logically equiv-
alent to  . For every Tarski formula, one can find its prenex form using a simple
procedure that works in four steps: (1) eliminate redundant quantifiers; (2) re-
name variables so that the same variable does not occur as free and bound; (3)
move negations inward; and finally, (4) push quantifiers to the left.

THE DECISION PROBLEM

The general decision problem for the first-order theory of reals is to determine
if a given Tarski sentence is true or false. A particularly interesting special case
of the problem is when all the quantifiers are existential. We refer to the decision
problem in this case as the existential problem for the first-order theory of reals.

The general decision problem was shown to be decidable by Tarski [Tar51].
However, the complexity of Tarski’s original algorithm could only be given by a
very rapidly-growing function of the input size (e.g., a function that could not be
expressed as a bounded tower of exponents of the input size). The first algorithm
with substantial improvement over Tarski’s algorithm was due to Collins [Col75];
it has a doubly-exponential time complexity in the number of variables appear-
ing in the sentence. Further improvements have been made by a number of re-
searchers (Grigor’ev-Vorobjov [Gri88, GV88], Canny [Can88, Can93], Heintz et
al. [HRS89, HRS90], Renegar [Ren92a, Ren92b, Ren92c]) and most recently by
Basu et al. [BPR96, Bas99a].

In the following, we assume that our Tarski sentence is presented in its prenex
form:

(Q
1

x

[1]) (Q
2

x

[2]) · · · (Q!x
[!]) [ (x[1], . . . ,x[!])],

where the Qi’s form a sequence of alternating quantifiers (i.e., 8 or 9, with every
pair of consecutive quantifiers distinct), with x

[i] a partition of the variables

!
[

i=0

x

[i] = {x
1

, x
2

, . . . , xk} , x, and |x[i]| = ki,

and where  is a quantifier-free formula with atomic predicates consisting of poly-
nomial equalities and inequalities of the form

gi
⇣

x

[1], . . . ,x[!]

⌘

T 0, i = 1, . . . , s.

Here, gi is a multivariate polynomial (over R or Q, as the case may be) of total
degree bounded by d. There are a total of s such polynomials. The special case
! = 1 reduces the problem to that of the existential problem for the first-order
theory of reals.

If the polynomials of the basic equalities, inequalities, inequations, etc., are
over the rationals, then we assume that their coe�cients can be stored with at
most L bits. Thus the arithmetic complexity can be described in terms of k, ki, !,
s, and d, and the bit complexity will involve L as well.
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TABLE 38.1.1 Selected time complexity results.

GENERAL OR

EXISTENTIAL TIME COMPLEXITY SOURCE

General L3
(sd)2

O(⌃ki)
[Col75]

Existential LO(1)
(sd)O(k2)

[GV92]

General LO(1)
(sd)(O(

P
ki))

4!�2
[Gri88]

Existential L1+o(1)
(s)(k+1)

(d)O(k2)
[Can88, Can93]

General (L logL log logL)(sd)(2
O(!))⇧ki

[Ren92a, Ren92b, Ren92c]

Existential (L logL log logL)s (s/k)k (d)O(k)
[BPR96]

General (L logL log logL)(s)⇧(ki+1)
(d)⇧O(ki)

[BPR96]

Table 38.1.1 highlights a representative set of known bit-complexity results for
the decision problem.

QUANTIFIER ELIMINATION PROBLEM

Formally, given a Tarski formula of the form,

 (x[0]) = (Q
1

x

[1]) (Q
2

x

[2]) · · · (Q!x
[!]) [ (x[0],x[1], . . . ,x[!])] ,

where  is a quantifier-free formula, the quantifier elimination problem is to
construct another quantifier-free formula, �(x[0]), such that �(x[0]) holds if and
only if  (x[0]) holds. Such a quantifier-free formula takes the form

�(x[0]) ⌘
I
_

i=1

Jî

j=1

⇣

fi,j(x
[0]) T 0

⌘

,

where fi,j 2 R[x[0]] is a multivariate polynomial with real coe�cients.
The current best bounds were given by Basu et. al. [BPR96] and are summa-

rized as follows:

I  (s)
Q

(ki+1)(d)
Q

O(ki)

Ji  (s)
Q

i>0(ki+1)(d)
Q

i>0 O(ki).

The total degrees of the polynomials fi,j(x[0]) are bounded by

(d)
Q

i>0 O(ki).

Nonetheless, comparing the above bounds to the bounds obtained in semilinear

geometry , it appears that the “combinatorial part” of the complexity of both the
formula and the computation could be improved to (s)

Q
i>0(ki+1). Basu [Bas99a]

proved the following bound (with improved combinatorial part) for the size of the
equivalent quantifier-free formula

I, Ji  (s)
Q

i>0(ki+1)(d)k
0
0

Q
i>0 O(ki),
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where k0
0

= min(k
0

+ 1, ⌧
Q

i>0

(ki + 1)) and ⌧ is a bound on the number of free-
variables occurring in any polynomial in the original Tarski formula. The total
degrees of the polynomials fi,j(x[0]) are still bounded by

(d)
Q

i>0 O(ki).

Furthermore, the algorithmic complexity of Basu’s procedure involves only
(s)

Q
i>0(ki+1)(d)k

0
0

Q
i>0 O(ki) arithmetic operations.

Lower bound results for the quantifier elimination problem can be found in
Davenport and Heintz [DH88]. They showed that for every k, there exists a Tarski
formula  k with k quantifiers, of length O(k), and of constant degree, such that
any quantifier-free formula  k logically equivalent to  k must involve polynomials
of

degree = 22
⌦(k)

and length = 22
⌦(k)

.

Note that in the simplest possible case (i.e., d = 2 and ki = 2), upper and lower
bounds are doubly-exponential and match well. This result, however, does not
imply a similar lower bound for the decision problems.

From the point of view of hardness, it is easily seen that the problem of deciding
a sentence in the existential theory of the reals (with integer coe�cients) is NP-
hard in the Turing model of computation, and it was proved by Blum, Shub and
Smale [BSS89], that deciding whether a real polynomial of degree 4 has a real zero
in Rn is NPR-complete in the Blum-Shub-Smale model of computations [BCSS98].

38.2 SEMIALGEBRAIC SETS

Every quantifier-free formula composed of polynomial inequalities and Boolean con-
nectives defines a semialgebraic set. Thus, these semialgebraic sets play an impor-
tant role in real algebraic geometry.

GLOSSARY

Semialgebraic set: A subset S ✓ Rk defined by a set-theoretic expression in-
volving a system of polynomial inequalities

S =
I
[

i=1

Ji
\

j=1

n

(⇠
1

, . . . , ⇠k) 2 Rk | sgn(fi,j(⇠1, . . . , ⇠k)) = si,j
o

,

where the fi,j ’s are multivariate polynomials over R and the si,j ’s are corre-
sponding sets of signs in {�1, 0, +1}.

Real algebraic set, real algebraic variety: A subset Z ✓ Rk defined by a
system of algebraic equations.

Z =
n

(⇠
1

, . . . , ⇠k) 2 Rn | f
1

(⇠
1

, . . . , ⇠k) = · · · = fm(⇠
1

, . . . , ⇠k) = 0
o

,

where the fi’s are multivariate polynomials over R. For any finite set of poly-
nomials P ⇢ R[x

1

, . . . , xk] we denote by Zer(P,Rk) the associated real algebraic
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set in Rk. Real algebraic sets are also referred to as real algebraic varieties, or
just as varieties if the ambient space is clear from context.

Semialgebraic map: A map ✓ : S ! T , from a semialgebraic set S ✓ Rk to a
semialgebraic set T ✓ R`, such that its graph {(x, ✓(x)) 2 Rk+` : s 2 S} is a
semialgebraic set in Rk+`. Note that projection, being linear, is a semialgebraic
map.

Dimension of a semi-algebraic set: For any semi-algebraic set S, the dimen-
sion of S is the maximum number i, such that there exists a semi-algebraic
injective map from (0, 1)i to S.

Real dimension of a real algebraic variety: The real dimension of a real
algebraic variety V ⇢ Rk is the dimension of V as a semi-algebraic set and is at
most k. Note also that the real dimension of V is at most the complex dimension

of the Zariski closure of V in Ck i.e. the smallest complex sub-variety of Ck which
contains V . We refer the reader to [BCR98] for intricacies of dimension theory
of real and complex varieties.

TARSKI-SEIDENBERG THEOREM

Equivalently, semialgebraic sets can be defined as

S =
n

(⇠
1

, . . . , ⇠k) 2 Rk |  (⇠
1

, . . . , ⇠k) = True
o

,

where  (x
1

, . . ., xk) is a quantifier-free formula involving n algebraic variables. As a
direct corollary of Tarski’s theorem on quantifier elimination, we see that extensions
of Tarski formulas are also semialgebraic sets.

While real algebraic sets are quite interesting and would be natural objects of
study in this context, they are not closed under projection onto a subspace. Hence
they tend to be unwieldy. However, semialgebraic sets are closed under projection.
This follows from a more general result: the famous Tarski-Seidenberg theo-
rem which is an immediate consequence of quantifier elimination, since images are
described by formulas involving only existential quantifiers.

THEOREM 38.2.1 (Tarski-Seidenberg Theorem) [Tar51]

Let S be a semialgebraic set in Rk
, and let ✓ : Rk ! R`

be a semialgebraic map.

Then ✓(S) is semialgebraic in R`
.

In fact, semialgebraic sets can be defined simply as the smallest class of subsets
of Rk, k � 0, containing real algebraic sets and closed under projection.

GLOSSARY

Connected component of a semialgebraic set: A maximal connected subset
of a semialgebraic set. Semialgebraic sets have a finite number of connected
components and these are also semialgebraic.

Semialgebraic decomposition of a semialgebraic set S: A finite collection
K of disjoint connected semialgebraic subsets of S whose union is S. The col-
lection of connected components of a semialgebraic set forms a semialgebraic
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decomposition. Thus, every semialgebraic set admits a semialgebraic decompo-
sition.

Set of sample points for S: A finite number of points meeting every nonempty
connected component of S.

Sign assignment: A vector of sign values of a set of polynomials at a point p.
More formally, let P ⇢ R[X

1

, . . . , Xk].

Any point p = (⇠
1

, . . . , ⇠k) 2 Rk has a sign assignment with respect to P as
follows:

sgnP(p) =
⇣

sgn(f(⇠
1

, . . . , ⇠k)) | f 2 P
⌘

.

A sign assignment induces an equivalence relation: Given two points p, q 2 Rk,
we say

p ⇠P q, if and only if sgnP(p) = sgnP(q).

Sign class of P: An equivalence class in the partition of Rk defined by the
equivalence relation ⇠P .

Semialgebraic decomposition for P: A finite collection of disjoint connected
semialgebraic subsets {Ci} such that each Ci is contained in some semialgebraic
sign class of P. That is, the sign of each f 2 P is invariant in each Ci.
The collection of connected components of the sign-invariant sets for P forms a
semialgebraic decomposition for P.

Cell decomposition for P: A semialgebraic decomposition for P into finitely
many disjoint semialgebraic subsets {Ci} called cells, such that each cell Ci is
homeomorphic to R�(i), 0  �(i)  k. �(i) is called the dimension of the cell
Ci, and Ci is called a �(i)-cell.

Cellular decomposition for P: A cell decomposition for P such that the closure
Ci of each cell Ci is a union of cells Cj : Ci = [jCj .

Realization of a first-order formula: For any finite family of polynomials
P ⇢ R[x

1

, . . . , xk], we call an element � 2 {0, 1,�1}P , a sign condition on P.
For any semi-algebraic set Z ⇢ Rk, and a sign condition � 2 {0, 1,�1}P , we
denote by Reali(�, Z) the semi-algebraic set defined by

{x 2 Z | sign(P (x)) = �(P ), P 2 P},

and call it the realization of � on Z.

P- and P-closed semi-algebraic sets: More generally, we call any Boolean
formula � with atoms, P{=, >,<}0, P 2 P, to be a P-formula. We call the
realization of �, namely the semi-algebraic set

Reali
�

�,Rk
�

=
�

x 2 Rk | �(x)
 

a P-semi-algebraic set. Finally, we call a Boolean formula without negations,
and with atoms P{�,}0, P 2 P, to be a P-closed formula, and we call the
realization, Reali

�

�,Rk
�

, a P-closed semi-algebraic set.

Betti numbers of semi-algebraic sets: For any semi-algebraic set S we denote
by bi(S), the rank of the i-th homology group, Hi(S,Z), of S, and by b(S) =
P

i bi(S). In particular, b
0

(S) equals the number of connected components of S.
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Generalized Euler-Poincaré characteristic of semi-algebraic sets: The
Euler-Poincaré characteristic, �(S), of a closed and bounded semi-algebraic set
S ⇢ Rk is defined as �(S) =

P

i(�1)ibi(S). The Euler-Poincaré characteristic
defined above for closed and bounded semi-algebraic set can be extended addi-
tively to all semi-algebraic sets, and this additive invariant is then known as the
generalized Euler-Poincaré characteristic.

38.3 REAL ALGEBRAIC NUMBERS

Real algebraic numbers are real roots of rational univariate polynomials and pro-
vide finitary representation for some of the basic objects (e.g., sample points).
Furthermore, we note that (1) real algebraic numbers have e↵ective finitary repre-
sentation, (2) field operations and polynomial evaluation on real algebraic numbers
are e�ciently (polynomially) computable, and (3) conversions among various repre-
sentations of real algebraic numbers are e�ciently (polynomially) computable. The
key machinery used in describing and manipulating real algebraic numbers relies
upon techniques based on the Sturm-Sylvester theorem, Thom’s lemma, resultant
construction, and various bounds for real root separation.

GLOSSARY

Real algebraic number: A real root ↵ of a univariate polynomial p(t) 2 Z[t]
with integer coe�cients.

Polynomial for ↵: A univariate polynomial p such that ↵ is a real root of p.

Minimal polynomial of ↵: A univariate polynomial p of minimal degree defin-
ing ↵ as above.

Degree of a nonzero real algebraic number: The degree of its minimal poly-
nomial. By convention, the degree of the 0 polynomial is �1.

Real closed field: An ordered field in which every positive element is a square,
and every odd degree polynomial has a root.

OPERATIONS ON REAL ALGEBRAIC NUMBERS

Note that if ↵ and � are real algebraic numbers, then so are �↵, ↵�1 (assuming
↵ 6= 0), ↵+�, and ↵·�. These facts can be constructively proved using the algebraic
properties of a resultant construction.

THEOREM 38.3.1

The real algebraic numbers form a field.

A real algebraic number ↵ can be represented by a polynomial for ↵ and a
component that identifies the root. There are essentially three types of information
that may be used for this identification: order (where we assume the real roots are
indexed from left to right), sign (by a vector of signs), or interval (an interval that
contains exactly one root).
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A classical technique due to Sturm and Sylvester shows how to compute the
number of real roots of a univariate polynomial p(t) in an interval [a, b]. One
important use of this classical theorem is to compute a sequence of relatively small
(nonoverlapping) intervals that isolate the real roots of p.

GLOSSARY

Sturm sequence of a pair of polynomials p(t) and q(t) 2 R[t]:

sturm(p, q) =
D

r̂
0

(t), r̂
1

(t), . . . , r̂s(t)
E

,

where

r̂
0

(t) = p(t)
r̂
1

(t) = q(t)
...

r̂i�1

(t) = q̂i(t) r̂i(t)� r̂i+1

(t), deg(r̂i+1

) < deg(r̂i)
...

r̂s�1

(t) = q̂s(t) r̂s(t).

Number of variations in sign of a finite sequence c of real numbers: Number
of times the entries change sign when scanned sequentially from left to right;
denoted Var(c).

For a vector of polynomials P = hp
1

(t), . . ., pm(t)i and a real number a:

Vara(P ) = Var(P (a)) = Var(hp
1

(a), . . . , pm(a)i).

Formal derivative: p0(t) = D(p(t)), whereD : R[t] ! R[t] is the (formal) deriva-
tive map, taking tn to ntn�1 and a 2 R (a constant) to 0.

STURM-SYLVESTER THEOREM

THEOREM 38.3.2 Sturm-Sylvester Theorem [Stu35, Syl53]

Let p(t) and q(t) 2 R[t] be two real univariate polynomials. Then, for any interval

[a, b] ✓ R [ {±1} (where a < b):

Var
h

P
ib

a
= cp

h

q > 0
ib

a
� cp

h

q < 0
ib

a
,

where

P , sturm(p, p0q),

Var
h

P
ib

a
, Vara(P )�Varb(P ) ,

and cp[P]ba counts the number of distinct real roots (without counting multiplicity)
of p in the interval (a, b) at which the predicate P holds.
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Note that if we take Sp , sturm(p, p0) (i.e., q = 1) then

Var
h

Sp

ib

a
= cp

h

True
ib

a
� cp

h

False
ib

a

= # of distinct real roots of p in (a, b).

COROLLARY 38.3.3

Let p(t) and q(t) be two polynomials with coe�cients in a real closed field K. For

any interval [a, b] as before, we have

2

6

6

6

6

4

1 1 1

0 1 �1

0 1 1

3

7

7

7

7

5

2

6

6

6

6

6

6

6

6

4

cp
h

q = 0
ib

a

cp
h

q > 0
ib

a

cp
h

q < 0
ib

a

3

7

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

4

Var
h

sturm(p, p0)
ib

a

Var
h

sturm(p, p0q)
ib

a

Var
h

sturm(p, p0q2)
ib

a

3

7

7

7

7

7

7

7

7

5

.

These identities as well as some related algorithmic results (the so-called BKR-
algorithm) are based on results of Ben-Or et al. [BOKR86] and their extensions by
others. Using this identity, it is a fairly simple matter to decide the sign conditions
of a single univariate polynomial q at the roots of a univariate polynomial p. It
is possible to generalize this idea to decide the sign conditions of a sequence of
univariate polynomials q

0

(t), q
1

(t), . . ., qn(t) at the roots of a single polynomial
p(t) and hence give an e�cient (both sequential and parallel) algorithm for the
decision problem for Tarski sentences involving univariate polynomials. Further
applications in the context of general decision problems are described below.

GLOSSARY

Fourier sequence of a real univariate polynomial p(t) of degree n:

fourier(p) =
D

p(0)(t) = p(t), p(1)(t) = p0(t), . . . , p(n)(t)
↵

,

where p(i) is the ith derivative of p with respect to t.

Sign-invariant region of R determined by a sign sequence s with respect to
fourier(p): The region R(s) with the property that ⇠ 2 R(s) if and only if
sgn(p(i)(⇠)) = si.

THOM’S LEMMA

LEMMA 38.3.4 Thom’s Lemma [Tho65]

Every nonempty sign-invariant region R(s) (determined by a sign sequence s with

respect to fourier(p)) must be connected, i.e., consists of a single interval.

Let sgn⇠(fourier(p)) be the sign sequence obtained by evaluating the polyno-
mials of fourier(p) at ⇠. Then as an immediate corollary of Thom’s lemma, we
have:
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COROLLARY 38.3.5

Let ⇠ and ⇣ be two real roots of a real univariate polynomial p(t) of positive degree

n > 0. Then ⇠ = ⇣, if

sgn⇠(fourier(p
0)) = sgn⇣(fourier(p

0)).

REPRESENTATION OF REAL ALGEBRAIC NUMBERS

Let p(t) be a univariate polynomial of degree d with integer coe�cients. Assume
that the distinct real roots of p(t) have been enumerated as follows:

↵
1

< ↵
2

< · · · < ↵j�1

< ↵j = ↵ < ↵j+1

< · · · < ↵l,

where l  d = deg(p). Then we can represent any of its roots uniquely and in a
finitary manner.

GLOSSARY

Order representation of an algebraic number: A pair consisting of its poly-
nomial p and its index j in the monotone sequence enumerating the real roots
of p: h↵io = hp, ji. Example: h

p
2 +

p
3io = hx4 � 10x2 + 1, 4i.

Sign representation of an algebraic number: A pair consisting of its polyno-
mial p and a sign sequence s representing the signs of its Fourier sequence eval-
uated at the root: h↵is = hp, s = sgn↵(fourier(p

0))i. Example: h
p
2 +

p
3is =

hx4 � 10x2 + 1, (+1,+1,+1)i. The validity of this representation follows easily
from Thom’s Lemma.

Interval representation of an algebraic number: A triple consisting of its
polynomial p and the two endpoints of an isolating interval, (l, r) (l, r 2 Q, l < r),
containing only ↵: h↵ii = hp, l, ri. Example: h

p
2+

p
3ii = hx4�10x2+1, 3, 7/2i.

38.4 UNIVARIATE DECOMPOSITION

In the one-dimensional case, a semialgebraic set is the union of finitely many in-
tervals whose endpoints are real algebraic numbers. For instance, given a set of
univariate defining polynomials:

F =
n

fi(x) 2 Q[x] | i = 1, . . . ,m
o

,

we may enumerate all the real roots of the fi’s (i.e., the real roots of the single
polynomial F =

Q

fi) as

�1 < ⇠
1

< ⇠
2

< · · · < ⇠i�1

< ⇠i < ⇠i+1

< · · · < ⇠s < +1,

and consider the following finite set K of elementary intervals defined by these roots:

[�1, ⇠
1

), [⇠
1

, ⇠
1

], (⇠
1

, ⇠
2

), . . . ,

(⇠i�1

, ⇠i), [⇠i, ⇠i], (⇠i, ⇠i+1

), . . . , [⇠s, ⇠s], (⇠s,+1].
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Note that K is, in fact, a cellular decomposition for F . Any semialgebraic set S
defined by F is simply the union of a subset of elementary intervals in K. Further-
more, for each interval C 2 K, we can compute a sample point ↵C as follows:

↵C =

8

>

>

<

>

>

:

⇠
1

� 1, if C = [�1, ⇠
1

);
⇠i, if C = [⇠i, ⇠i];
(⇠i + ⇠i+1

)/2, if C = (⇠i, ⇠i+1

);
⇠s + 1, if C = (⇠s,+1].

Now, given a first-order formula involving a single variable, its validity can be
checked by evaluating the associated univariate polynomials at the sample points.
Using the algorithms for representing and manipulating real algebraic numbers, we
see that the bit complexity of the decision algorithm is bounded by (Lmd)O(1). The
resulting cellular decomposition has no more than 2md+ 1 cells.

Using variants of the theorem due to Ben-Or et al. [BOKR86], Thom’s lemma,
and some results on parallel computations in linear algebra, one can show that
this univariate decision problem is “well-parallelizable,” i.e., the problem is solv-
able by uniform circuits of bounded depth and polynomially many “gates” (simple
processors).

38.5 MULTIVARIATE DECOMPOSITION

A straightforward generalization of the standard univariate decomposition to higher
dimensions is provided by Collins’s cylindrical algebraic decomposition [Col75]. In
order to represent a semialgebraic set S ✓ Rk, we may assume recursively that we
can construct a cell decomposition of its projection ⇡(S) ✓ Rk�1 (also a semialge-
braic set), and then decompose S as a union of the sectors and sections in the
cylinders above each cell of the projection, ⇡(S).

This procedure also leads to a cell decomposition of S. One can further assign
an algebraic sample point in each cell of S recursively in a straightforward manner.

If F is a set of polynomials defining the semialgebraic set S ✓ Rk, then at
no additional cost, we may in fact compute a cell decomposition for P using the
procedure described above. Such a decomposition leads to a cylindrical algebraic

decomposition for P.

GLOSSARY

Cylindrical algebraic decomposition (CAD): A recursively defined cell de-
composition of Rk for P. The decomposition is a cellular decomposition if the
set of defining polynomials P satisfies certain nondegeneracy conditions.

In the recursive definition, the cells of k-dimensional CAD are constructed from a
(k�1)-dimensional CAD: Every (k�1)-dimensional CAD cell C 0 has the property
that the distinct real roots of F over C 0 vary continuously as a function of the
points of C 0.

Moreover, the following quantities remain invariant over a (k�1)-dimensional
cell: (1) the total number of complex roots of each polynomial of F ; (2) the
number of distinct complex roots of each polynomial of F ; and (3) the total
number of common complex roots of every distinct pair of polynomials of F .
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These conditions can be expressed by a set �(F) of at most O(sd)2 polynomials
in k � 1 variables, obtained by considering principal subresultant coe�cients

(PSC’s). Thus, they correspond roughly to resultants and discriminants, and
ensure that the polynomials of P do not intersect or “fold” in a cylinder over
a (k�1)-dimensional cell. The polynomials in �(P) are each of degree no more
than d2.

More formally, a P-sign-invariant cylindrical algebraic decomposition of Rk is:

Base Case: k = 1. A univariate cellular decomposition of R1 as in the
previous section.

Inductive Case: k > 1. Let K0 be a �(P)-sign-invariant CAD of Rk�1. For
each cell C 0 2 K0, define an auxiliary polynomial gC0(x

1

, . . . , xk�1

, xk) as
the product of those polynomials of P that do not vanish over the (k�1)-
dimensional cell, C 0. The real roots of the auxiliary polynomial g0C over
C 0 give rise to a finite number (perhaps zero) of semialgebraic continuous
functions, which partition the cylinder C 0 ⇥ (R [ {±1}) into finitely many
P-sign-invariant “slices.” The auxiliary polynomials are of degree no larger
than sd.
Assume that the polynomial gC0(p0, xk) has l distinct real roots for each
p0 2 C 0: r

1

(p0), r
2

(p0), . . . , rl(p0), each ri being a continuous function of p0.
The following sectors and sections are cylindrical over C 0 (see Figure 38.5.1.):

C⇤
0

=
n

hp0, xki | p0 2 C 0 ^ xk 2 [�1, r
1

(p0))
o

,

C
1

=
n

hp0, xki | p0 2 C 0 ^ xk 2 [r
1

(p0), r
1

(p0)]
o

,

C⇤
1

=
n

hp0, xki | p0 2 C 0 ^ xk 2 (r
1

(p0), r
2

(p0))
o

,

...

C⇤
l =

n

hp0, xki | p0 2 C 0 ^ xk 2 (rl(p
0),+1]

o

.

The k-dimensional CAD is thus the union of all the sections and sectors computed
over the cells of the (k�1)-dimensional CAD.

A straightforward recursive algorithm to compute a CAD follows from the
above description.

CYLINDRICAL ALGEBRAIC DECOMPOSITION

If we assume that the dimension k is a fixed constant, then the preceding cylindrical
algebraic decomposition algorithm is polynomial in s = |P| and d = deg(P). How-
ever, the algorithm can be easily seen to be doubly-exponential in k as the number

of polynomials produced at the lowest dimension is (sd)2
O(k)

, each of degree no

larger than d2
O(k)

. The number of cells produced by the algorithm is also doubly-

exponential . This bound can be seen to be tight by a result due to Davenport and
Heintz [DH88], and is related to their lower bound for the quantifier elimination
problem (Section 38.1).
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C´

r3

r2

r1

FIGURE 38.5.1
Sections and sectors “slicing” the cylinder over a lower dimensional cell.

CONSTRUCTING SAMPLE POINTS

Cylindrical algebraic decomposition provides a sample point in every sign-invariant
connected component for P. However, the total number of sample points gener-
ated is doubly-exponential, while the number of connected components of all sign
conditions is only singly-exponential. In order to avoid this high complexity (both
algebraic and combinatorial) of a CAD, many recent techniques for constructing
sample points use a single projection to a line instead of a sequence of cascading pro-
jections. For instance, if one chooses a height function carefully then one can easily
enumerate its critical points and then associate at least two such critical points to
every connected component of the semialgebraic set. From these critical points,
it will be possible to create at least one sample point per connected component.
Using Bézout’s bound, it is seen that only a singly-exponential number of sample
points is created, thus improving the complexity of the underlying algorithms.

However, in order to arrive at the preceding conclusion using critical points,
one requires certain genericity conditions that can be achieved by symbolically
deforming the underlying semialgebraic sets. These infinitesimal deformations can
be handled by extending the underlying field to a field of Puiseux series. Many of
the significant complexity improvements based on these techniques have been due
to a careful choice of the symbolic perturbation schemes which results in keeping
the number of perturbation variables small.

Currently, the best algorithm computing a finite set of points of bounded size
that intersects every connected component of each nonempty sign condition is due
to Basu et al. [BPR98] and has an arithmetic time-complexity of s(s/k)kdO(k),
where s is the number of polynomials, d the maximum degree, and k the number
of variables.
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38.6 ALGORITHMIC APPROACHES

COLLINS’ APPROACH

The decision problem for the first-order theory of reals can be solved easily using
a cylindrical algebraic decomposition. First consider the existential problem for a
sentence with only existential quantifiers,

(9 x

[0]) [ (x[0])].

This sentence is true if and only if there is a q 2 C, a sample point in the cell C,

q = ↵[0] = (↵
1

, . . . ,↵k) 2 Rk,

such that  (↵[0]) is true. Thus we see that the decision problem for the purely ex-
istential sentence can be solved by simply evaluating the matrix  over the finitely
many sample points in the associated CAD. This also implies that the existential
quantifiers could be replaced by finitely many disjunctions ranging over all the sam-
ple points. Note that the same arguments hold for any semialgebraic decomposition
with at least one sample point per sign-invariant connected component.

In the general case, one can describe the decision procedure by means of a
search process that proceeds only on the coordinates of the sample points in the
cylindrical algebraic decomposition. This follows because a sample point in a cell
acts as a representative for any point in the cell as far as the sign conditions are
concerned.

Consider a Tarski sentence

(Q
1

x

[1]) (Q
2

x

[2]) · · · (Q!x
[!]) [ (x[1], . . . ,x[!])],

with F the set of polynomials appearing in the matrix  . Let K be a cylindrical
algebraic decomposition of Rk for F . Since the cylindrical algebraic decomposition
produces a sequence of decompositions:

K
1

of R1, K
2

of R2, . . . , Kk of Rk,

such that each cell Ci�1,j of Ki is cylindrical over some cell Ci�1

of Ki�1

, the search
progresses by first finding cells C

1

of K
1

such that

(Q
2

x
2

) · · · (Qkxk) [ (↵C1 , x2

, . . . , xk)] = True.

For each C
1

, the search continues over cells C
12

of K
2

cylindrical over C
1

such that

(Q
3

x
3

) · · · (Qkxk) [ (↵C1 ,↵C12 , x3

, . . . , xk)] = True,

etc. Finally, at the bottom level the truth properties of the matrix  are determined
by evaluating at all the coordinates of the sample points.

This produces a tree structure, where each node at the (i�1)th level corresponds
to a cell Ci�1

2 Ki�1

and its children correspond to the cells Ci�1,j 2 Ki that
are cylindrical over Ci�1

. The leaves of the tree correspond to the cells of the
final decomposition K = Kk. Because we only have finitely many sample points,
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the universal quantifiers can be replaced by finitely many conjunctions and the
existential quantifiers by disjunctions. Thus, we label every node at the (i�1)th
level “AND” (respectively, “OR”) if Qi is a universal quantifier 8 (respectively,
9) to produce a so-called AND-OR tree. The truth of the Tarski sentence is thus
determined by simply evaluating this AND-OR tree.

A quantifier elimination algorithm can be devised by a similar reasoning and a
slight modification of the CAD algorithm described above.

NEW APPROACHES USING CRITICAL POINTS

In order to avoid the cascading projections inherent in Collins’s algorithm, the new
approaches employ a single projection to a one-dimensional set by using critical
points in a manner described above. As before, we start with a sentence with only
existential quantifiers,

(9 x

[0]) [ (x[0])].

Let P = {f
1

, . . ., fs} be the set of polynomials appearing in the matrix  .
Under certain genericity conditions, it is possible to produce a set of sample

points such that every sign-invariant connected component of the decomposition
induced by F contains at least one such point. Furthermore, these sample points
are described by a set of univariate polynomial sequences, where each sequence is
of the form

p(t), q
0

(t), q
1

(t), . . . , qk(t),

and encodes a sample point h q1(↵)q0(↵)
, . . . , qk(↵)

q0(↵)
i. Here ↵ is a root of p. Now the decision

problem for the existential theory can be solved by deciding the sign conditions of
the sequence of univariate polynomials

f
1

(q
1

/q
0

, . . . , qk/q0), . . . , fs(q1/q0, . . . , qk/q0),

at the roots of the univariate polynomial p(t). Note that we have now reduced
a multivariate problem to a univariate problem and can solve this by the BKR
approach.

In order to keep the complexity reasonably small, one needs to ensure that the
number of such sequences is small and that these polynomials are of low degree.
Assuming that the polynomials in F are in general position, one can achieve this
complexity and compute the polynomials p and qi (for example, by the u-resultant
method in Renegar’s algorithm [Ren92a, Ren92b, Ren92c]).

If the genericity conditions are violated, one needs to symbolically deform
the polynomials and carry out the computations on these polynomials with addi-
tional perturbation parameters. The Basu-Pollack-Roy (BPR) algorithm [BPR98,
BPR96] di↵ers from Renegar’s algorithm primarily in the manner in which these
perturbations are made so that their e↵ect on the algorithmic complexity is con-
trolled.

Next consider an existential Tarski formula of the form

(9 x

[0]) [ (y,x[0])],

where y represents the free variables. If we carry out the same computation as be-
fore over the ambient field R(y), we get a set of parameterized univariate polynomial
sequences, each of the form

p(y, t), q
0

(y, t), q
1

(y, t), . . . , qk(y, t).
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For a fixed value of y, say ȳ, the polynomials

p(ȳ, t), q
0

(ȳ, t), q
1

(ȳ, t), . . . , qk(ȳ, t)

can then be used as before to decide the truth or falsity of the sentence

(9 x

[0]) [ (ȳ,x[0])].

Also, one may observe that the parameter space y can be partitioned into semial-
gebraic sets so that all the necessary information can be obtained by computing at
sample values ȳ.

This process can be extended to ! blocks of quantifiers, by replacing each block
of variables by a finite number of cases, each involving only one new variable; the
last step uses a CAD method for these !-many variables.

38.7 TOPOLOGICAL COMPLEXITY OF SEMI-
ALGEBRAIC SETS

One useful feature of semi-algebraic sets is that they admit uniform bounds on their
topological complexity (measured by their Betti numbers) in terms of the number
and degrees of polynomials appearing in the first-order formulas defining them. The
uniformity refers to the fact that these bounds are independent of the coe�cients
of the defining polynomials (unlike for example the bounds in Theorems 38.9.1,
38.9.2, 38.9.3, and 38.9.4).

The first results on bounding the Betti numbers of real varieties were proved by
Olĕınik and Petrovskĭı [PO49], Thom [Tho65] and Milnor [Mil64]. Using a Morse-
theoretic argument and Bézout’s theorem they proved (using b(S) to denote the
sum of the Betti numbers of a semi-algebraic set S):

THEOREM 38.7.1 [PO49, Tho65, Mil64]

Let Q ⇢ R[x
1

, . . . , xk] with deg(Q)  d,Q 2 Q. Then,

b(Zer(Q,Rk))  d(2d� 1)k�1. (38.7.1)

More generally, if S ⇢ Rk
is defined by P

1

� 0, . . . , Ps � 0, with

Pi 2 R[x
1

, . . . , xk], deg(Pi)  d, 1  i  d,

then

b(S)  sd(2sd� 1)k�1. (38.7.2)

Theorem 38.7.1 was later generalized to arbitrary semi-algebraic sets defined by
quantifier-free formulas in two steps. In the first step, Theorem 38.7.1 was extended
to a particular class of semi-algebraic sets – namely P-closed semi-algebraic sets,
where P ⇢ R[x

1

, . . . , xk] is a finite family of polynomials. The following theorem
appears in [BPR05a] and sharpens an earlier result of [Bas99b].

THEOREM 38.7.2 [BPR05a]

If S ⇢ Rk
is a P-closed semi-algebraic set, then

b(S) 
k
X

i=0

k�i
X

j=0

✓

s+ 1

j

◆

6jd(2d� 1)k�1, (38.7.3)
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where s = card(P) > 0 and d = maxP2P deg(P ).

Using an additional ingredient (namely, a technique to replace an arbitrary
semi-algebraic set by a locally closed one with a very controlled increase in the
number of polynomials used to describe the given set), Gabrielov and Vorobjov
[GV05] extended Theorem 38.7.2 to arbitrary P-semi-algebraic sets with only a
small increase in the bound. Their result in conjunction with Theorem 38.7.2 gives
the following theorem.

THEOREM 38.7.3 [GV09]

If S ⇢ Rk
is a P-semi-algebraic set, then

b(S) 
k
X

i=0

k�i
X

j=0

✓

2ks+ 1

j

◆

6jd(2d� 1)k�1, (38.7.4)

where s = card(P) and d = maxP2P deg(P ).

The bounds mentioned above have many applications – for example, providing
upper bounds on the number of distinct configurations of n points in Rk as well as
on the number of combinatorial types of polytopes [GP86a, GP86b], in geometric
transversal theory [GPW95], and for proving lower bounds for membership testing
in certain algebraic models of computations [Yao97, MMP96, VG15].

38.8 COMPUTING TOPOLOGICAL INVARIANTS OF
SEMI-ALGEBRAIC SETS

The problem of computing topological invariants of semi-algebraic sets is an impor-
tant problem that has attracted much attention. Unlike the problem of quantifier-
elimination or deciding Tarki-sentences, an e↵ective algorithm for deciding con-
nectivity of semi-algebraic sets does not automatically follow from the Tarski-
Seidenberg principle. However, one can decide questions about connectivity (as
well as compute other topological invariants such as the Betti numbers) using e↵ec-
tive triangulation of semi-algebraic sets via Cylindrical Algebraic Decomposition.
For instance, in one of their seminal papers, Schwartz and Sharir [SS83] gave an
algorithm for computing the homology groups of S using cylindrical algebraic de-
composition. Their algorithm necessarily has doubly exponential complexity.

Most of the recent work in algorithmic semi-algebraic geometry has focused on
obtaining singly exponential time algorithms – that is algorithms with complexity

of the order of (sd)k
O(1)

rather than (sd)2
k

, where s is the number of polynomials in
the input, d the maximum degree of the polynomials in the input and k the number
of variables.

ROADMAPS OF SEMI-ALGEBRAIC SETS

Singly-exponential time algorithms for counting the number of connected compo-
nents of semi-algebraic sets, or for computing a semi-algebraic path connecting two
points in the same connected component, all use the notion of a “roadmap”, first
introduced by Canny [Can87], who also gave a singly exponential time algorithm



Chapter 38: Computational and quantitative real algebraic geometry 19

to compute it. A roadmap of a semi-algebraic set S is a one-dimensional connected
subset which is connected inside each connected component of the S. Once these
roadmaps are available, they can be used to link up two points in the same con-
nected component. The main geometric idea is to construct roadmaps starting from
the critical sets of some projection function. The basic roadmap algorithm has been
improved and extended by several researchers (Heintz et al. [HRS90], Gournay and
Risler [GR93], Grigor’ev and Vorobjov [Gri88, GV88], and Canny [Can87, Can90]).
Using the same ideas as above and some additional techniques for controlling the
combinatorial complexity of the algorithm it is possible to extend the roadmap
algorithm to the case of semi-algebraic sets. The following theorem appears in
[BPR00, BPRbook].

THEOREM 38.8.1 [BPR00, BPRbook]

Let Q 2 R[x
1

, . . . , xk] with Zer(Q,Rk) of dimension k0 and let P ⇢ R[x
1

, . . . , xk]
be a set of at most s polynomials for which the degrees of the polynomials in P and

Q are bounded by d. Let S be a P-semi-algebraic subset of Zer(Q,Rk). There is an

algorithm which computes a roadmap RM(S) for S with complexity sk
0
+1dO(k2

)

.

Theorem 38.8.1 immediately implies that there is an algorithm whose output is
exactly one point in every semi-algebraically connected component of S and whose
complexity is bounded by sk

0
+1dO(k2

). In particular, this algorithm counts the
number semi-algebraically connected component of S within the same time bound.

Schost and Safey el Din [SS10] have given a probabilistic algorithm for comput-
ing the roadmap of a smooth, bounded real algebraic hyper-surface in Rk defined

by a polynomial of degree d, whose complexity is bounded by dO(k3/2
). Complex

algebraic techniques related to the geometry of polar varieties play an important
role in this algorithm. More recently, a deterministic algorithm for computing
roadmaps of arbitrary real algebraic sets with the same complexity bound, has also
been obtained [BRSEDS14].

The main new idea is to consider the critical points of projection maps onto a co-
ordinate subspace of dimension bigger than 1 (in fact, of dimension

p
k). As a result

the dimensions in the recursive calls to the algorithm decreases by
p
k at each step

of the recursion (compared to the case of the ordinary roadmap algorithms where
it decreases by 1 in each step). This strategy results in the improved complexity.
One also needs to prove suitable generalizations of the results guaranteeing the
connectivity of the roadmap (see [BPRbook, Chapter 15]) in this more general
situation.

The recursive schemes used in the algorithms in [SS10] and [BRSEDS14] have
a common defect in that they are unbalanced in the following sense. The dimension
of the fibers in which recursive calls are made is equal to k �

p
k (in the classical

case this dimension is k�1), which is much larger than the dimension of the “polar
variety” which is

p
k (this dimension is equal to 1 in the classical case). While being

less unbalanced than in the classical case (which accounts for the improvement in
the complexity), there is scope for further improvement if these two dimensions can
be made roughly equal. There are certain formidable technical obstructions to be
overcome to achieve this.

This challenge was tackled in [BR14] where an algorithm based on a balanced
(divide-and-conquer) scheme is given for computing a roadmap of an algebraic set.
The following theorem is proved.
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THEOREM 38.8.2 [BR14]

There exists an algorithm that takes as input:

1. a polynomial P 2 R[x
1

, . . . , xk], with deg(P )  d;

2. a finite set, A, of real univariate representations whose associated set of

points, A = {p
1

, . . . , pm}, is contained in V = Zer(P,Rk), and such that

the degree of the real univariate representation representing pi is bounded by

Di for 1  i  m;

and computes a roadmap of V containing A. The complexity of the algorithm is

bounded by

 

1 +
m
X

i=1

DO(log

2
(k))

i

!

(klog(k)d)O(k log

2
(k)).

The size of the output is bounded by (card(A) + 1)(klog(k)d)O(k log(k))
, while the

degrees of the polynomials appearing in the descriptions of the curve segments and

points in the output are bounded by

( max
1im

Di)
O(log(k))(klog(k)d)O(k log(k)).

A probabilistic algorithm based on a similar divide-and-conquer strategy which
works for smooth, bounded algebraic sets, and with a slightly better complexity is
given in [SS13]. As in [SS10], complex algebraic (as opposed to semi-algebraic)
techniques play an important role in this algorithm.

COMPUTING BETTI NUMBERS OF SEMI-ALGEBRAIC SETS

Algorithms for computing roadmaps of semi-algebraic sets immediately yield a
(singly exponential complexity) algorithm for computing the number of connected
components (or in another word the zero-th Betti number) of a semi-algebraic set
S. Computing higher Betti numbers of semi-algebraic sets with singly exponential
complexity is more di�cult. The best known result in this direction is the following
which generalizes an earlier result [BPR08] giving a singly exponential algorithm
for computing the first Betti number of a semi-algebraic set.

THEOREM 38.8.3 [Bas06]

For any given `, there is an algorithm that takes as input a P-formula describing

a semi-algebraic set S ⇢ Rk
, and outputs b

0

(S), . . . , b`(S). The complexity of the

algorithm is (sd)k
O(`)

, where s = card (P) and d = maxP2P deg(P ).

Note that the complexity is singly exponential in k for every fixed `.

COMPUTING GENERALIZED EULER-POINCARÉ CHARAC-
TERISTIC OF SEMI-ALGEBRAIC SETS

Another topological invariant of semi-algebraic sets for which a singly exponential
algorithm is known is the generalized Euler-Poincaré characteristic.

The problem of determining the Euler-Poincaré characteristic of P-closed semi-
algebraic sets was considered in [Bas99b]. In that paper an algorithm is presented
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for computing the Euler-Poincaré characteristic of a given P-closed semi-algebraic
set. The complexity of the algorithm is (ksd)O(k).

The following result (which should be viewed as a generalization of the univari-
ate sign determination algorithm) appears in [BPR05b].

THEOREM 38.8.4 [BPR05b]

There exists an algorithm which given an algebraic set Z = Zer(Q,Rk) ⇢ Rk
and a

finite set of polynomials P = {P
1

, . . . , Ps} ⇢ R[x
1

, . . . , xk], computes the list of the

generalized Euler-Poincaré characteristics of the realizations of all realizable sign

conditions of P on Z.

If the degrees of the polynomials in P [ {Q} are bounded by d, and the real

dimension of Z = Zer(Q,Rk) is k0, then the complexity of the algorithm is

sk
0
+1O(d)k + sk

0
((k0 log

2

(s) + k log
2

(d))d)O(k).

38.9 QUANTITATIVE RESULTS IN METRIC SEMI-
ALGEBRAIC GEOMETRY

There are certain metric results that follow from the algorithmic results mentioned
above which are very useful in practice. These results have several applications.
For example, they are needed for e�cient stopping criteria in algorithms that uses
sub-division methods to compute certificates of positivity of a given polynomial
over some compact semi-algebraic subset of Rk (for example, over the standard
simplex) [BCR08].

The following theorem is an example of metric upper bounds referred to above.
It provides an explicit upper bound on the radius of a ball centered at the origin
which is guaranteed to meet every semi-algebraically connected component of any
given semi-algebraic set in terms of the number s, the maximum degree d, and a
bound ⌧ on the bit sizes of the coe�cients of the defining polynomials.

To state the result precisely we first introduce the following notation. Given
an integer n, we denote by bit(n) the number of bits of its absolute value in the
binary representation. Note that

bit(nm)  bit(n) + bit(m), (38.9.1)

bit

 

n
X

i=1

mi

!

 bit(n) +
n

sup
i=1

(bit(mi)). (38.9.2)

THEOREM 38.9.1 [BR10]

Let P = {P
1

, . . . , Ps} ⇢ Z[x
1

, . . . , xk] and suppose that P 2 P have degrees at most

d, and the coe�cients of P 2 P have bit sizes at most ⌧ . Then there exists a ball

centered at the origin of radius

⇣

(2DN(2N � 1) + 1)2(2N�1)(⌧ 00
+bit(2N�1)+bit(2DN+1))

⌘

1/2
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where

d0 = sup(2(d+ 1), 6),

D = k(d0 � 2) + 2,

N = d0(d0 � 1)k�1,

⌧ 00 = N(⌧ 0
2

+ bit(N) + 2bit(2D + 1) + 1),

⌧ 0
2

= ⌧ 0
1

+ 2(k � 1)bit(N) + (2k � 1)bit(k),

⌧ 0
1

= D(⌧ 0
0

+ 4bit(2D + 1) + bit(N))� 2bit(2D + 1)� bit(N),

⌧ 0
0

= 2⌧ + kbit(d+ 1) + bit(2d0) + bit(s)

intersecting every semi-algebraically connected component of the realization of every

realizable sign condition on P.

Note that asymptotic bounds of the form 2⌧d
O(k)

for the same problem were
known before [BPRbook, GV88, Ren92a]. One point which needs some explana-
tion is the fact that the number of polynomials, s, plays a role in the estimate in

Theorem 38.9.1, while it does not appear in the formula 2⌧d
O(k)

. The explanation
for this situation is that the total number of polynomials of degree at most d in k

variables with bit sizes bounded by ⌧ is bounded by (2⌧+1)(
d+k
k ) = 2⌧d

O(k)

.
A related result is the following bound on the minimum value attained by an

integer polynomial restricted to a compact connected component of a basic closed
semi-algebraic subset of Rk defined by polynomials with integer coe�cients in terms
of the degrees and the bit sizes of the coe�cients of the polynomials involved.

THEOREM 38.9.2 [JPT13]

Let P = {P
1

, . . . .Ps} ⇢ Z[x
1

, . . . , xk] with deg(P )  d for all P 2 P, and let the

coe�cients of P have bit sizes bounded by ⌧ . Let Q 2 Z[x
1

, . . . , xk], deg(Q)  d,
and let the bit sizes of the coe�cients of Q be also bounded by ⌧ . Let C be a compact

connected component of the basic closed semi-algebraic set defined by P
1

= · · · =
P` = 0, P`+1

� 0, . . . , Ps � 0. Then the minimum value attained by Q over C is a

real algebraic number of degree at most 2n�1dn, and if it is not equal to 0, then its

absolute value is bounded from below by

(24�k/2Hdk)�k2kdk

,

where H = max(2⌧ , 2k + 2s).

We discuss next a generalization of Theorem 38.9.1 which has proved to be
useful in practice. Theorem 38.9.1 gives an upper bound on the radius of a ball
meeting every connected component of the realizations of every realizable sign con-
dition on a family of polynomials with integer coe�cients. It is well known that
the intersections of any semi-algebraic set S ⇢ Rk with open balls of large enough
radius are semi-algebraically homeomorphic. This result is a consequence of the
local conic structure of semi-algebraic sets [BCR98, Theorem 9.3.6].

Given a semi-algebraic set S ⇢ Rk defined by polynomials with coe�cients
in Z, the following theorem gives a singly exponential upper bound on the radius
of a ball having the following property. The homotopy type (not necessarily the
homeomorphism type) of S is preserved upon intersection of S with all balls of
larger radii.

THEOREM 38.9.3 [BV07]
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Let P = {P
1

, . . . , Ps} ⇢ Z[x
1

, . . . , xk] and suppose that P 2 P have degrees at

most d, and the coe�cients of P 2 P have bit sizes at most ⌧ . Let S ⇢ Rk
be a

P-semi-algebraic set.

There exists a constant c > 0, such that for any R
1

> R
2

> 2⌧d
ck

we have,

1. S \Bk(0, R1

) ' S \Bk(0, R2

), and

2. S \Bk(0, R1

) ' S \Bk(0, R2

)

(where ' denotes homotopy equivalence, and for R > 0, Bk(0, R) denotes the closed
ball of radius R centered at the origin).
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THEOREM 38.9.4 [BV07]

Let S ⇢ Rm
be a P-semi-algebraic set, with P ⇢ Z[x

1

, . . . , xk] and 0 2 S. Let

deg(P ) < d for each P 2 P, and the bit sizes of the coe�cients of P 2 P be less

than ⌧ . Then, there exists a constant c > 0 such that for every 0 < r < 2�⌧dck

the

set S \Bk(0, r) is contractible.

38.10 CONNECTION TO INCIDENCE GEOMETRY

Recently there has been a major impetus to take a new look at the problem
of bounding the topological complexity of semi-algebraic sets. It has come from
the injection of algebraic techniques to attack certain long standing open questions
in incidence geometry (see for example [KMSS12, AMS13, SSS13, Zah13, SS14,
Gut15b, Gut15a, SSZ15, MP15, Zah15]). The source of this impetus is the pio-
neering work of Guth and Katz [GK15], who following prior ideas of Elekes and
Sharir [ES11], made a breakthrough in a long-standing problem of Erdős on the
number of distinct distances between n points in a plane. Their main tool was a cer-
tain kind of decomposition (called “polynomial partitioning”) using the polynomial
ham-sandwich theorem due to Stone and Tukey [ST42], which played a somewhat
analogous role that cuttings or trapezoidal decomposition [Mat02] played in the
more classical Clarkson-Shor (see [CEG+90]) type divide-and-conquer arguments
for such problems. The polynomial partitioning result proved by Guth and Katz
can be summarized as follows.

THEOREM 38.10.1 [GK15]

Let S ⇢ Rk
be a finite set of cardinality n, and 0  r  n. Then, there exists

a polynomial P 2 R[x
1

, . . . , xk], with deg(P )  r1/k, having the property that for

each connected component C of Rk \ Zer(P,Rk), card(C \ S)  O(n/r).

The “partitioning” refers to the partitioning of the complement of the hypersur-
face Zer(P,Rk) (the zeros of P in Rk) into its (open) connected components. The
theorem ensures that each such connected component do not contain too many of
the points. Moreover, using Theorem 38.7.1 one also has that the number of such
connected components is bounded by O(r). Notice that the theorem allows for the
possibility that most (in fact all) the points in S are contained in the hypersurface
Zer(P,Rk).

The application of the partitioning theorem to concrete problems (say bound-
ing incidences) leads to a dichotomy caused by the last observation. The open
pieces of the decomposition are handled by induction, while a separate argument
is needed for handling the co-dimension one piece i.e. the hypersurface Zer(P,Rk)
itself. However, notice that P can have degree not bounded by any constant when
r is allowed to grow with n. The fact that this degree could depend on n (the
number of points) and is not constant distinguishes the Guth-Katz technique from
earlier decomposition based techniques (such as cuttings or trapezoidal decomposi-
tion [Mat02]). Because of this reason when applying Guth-Katz technique to higher
dimensional problems it is necessary to have more refined quantitative upper bounds
in real algebraic geometry where the dependence on the degrees is more explicit.
More precisely, one needs better bounds on the number of connected components
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of the realizations of di↵erent sign conditions of a finite family of polynomials, P,
restricted to a given variety V . A bound on this number that took into account the
real dimension of the variety V was known before (due to Basu, Pollack and Roy
[BPR05a]), but this bound did not make a distinction between the dependence on
the degrees of the polynomials in P and that of the polynomials defining V . In the
Guth-Katz framework such a distinction becomes crucial, since both these degrees
could be large but the degree of the polynomials defining V asymptotically much
smaller than those of P.

In [BB12] a stronger bound was proved on the number of connected components
of the realizable sign conditions of a family of polynomials restricted to a variety,
having a much more refined dependence on the degrees

THEOREM 38.10.2 [BB12]

Let Q,P ⇢ R[x
1

, . . . , xk] be finite subsets of polynomials such that deg(Q)  d
0

for all Q 2 Q, degP = dP for all P 2 P, and the real dimension of Zer(Q,Rk) is

k0  k. Suppose also that card P = s, and deg(P )  d, P 2 P.

Then, the number of connected components of the realizations of all realizable

sign conditions of P on Zer(Q,Rk) is bounded by (sd)k
0
dk�k0

0

O(1)k.

This result opened the doors to using the polynomial partitioning theorem
in higher dimensions, and was used to that e↵ect in several papers, for example
[Zah12, Zah13, KMSS12, MP15] (see also the survey by Tao [Tao14]). It is also
an ingredient in the analysis of the data structure for range searching with semi-
algebraic sets due to Agarwal, Matoušek and Sharir [AMS13].

In more sophisticated applications of the polynomial partitioning method a
further improvement was needed, in which the bound on the number of connected
components depends on a sequence of degrees of arbitrary length. Since dimensions
of real varieties (in contrast to complex varieties) can be rather badly behaved (for
example, the real variety defined by one non-constant polynomial can be empty), a
bound depending on the degree sequence must also take into account the dimensions
of the intermediate varieties not just the final variety. This strategy leads to the
following theorem.

THEOREM 38.10.3 [BB16]

Let Q
1

, . . . , Q` 2 R[x
1

, . . . , xk] such that for each i, 1  i  `, deg(Qi)  di. For

1  i  `, denote by Qi = {Q
1

, . . . , Qi}, Vi = Zer(Qi,Rk), and dimR(Vi)  ki.
We set V

0

= Rk
, and adopt the convention that ki = k for i  0. Suppose that

2  d
1

 d
2

 1

k+1

d
3

 1

(k+1)

2 d4  · · ·  1

(k+1)

`�2 d`. Then,

b
0

(V`)  O(1)`O(k)2k

0

@

Y

1j<`

d
kj�1�kj

j

1

A d
k`�1

` ,

and in particular if `  k,

b
0

(V`)  O(k)2k

0

@

Y

1j<`

d
kj�1�kj

j

1

A d
k`�1

` .

We remark that the (complex) dimension of complex varieties behaves better
than real dimension of real varieties. To see the contrast consider the following
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example. Using the same notation as in Theorem 38.10.3, let for 1  i  `,
Wi ⇢ Ck denote the complex variety defined by the set of polynomials Qi, and
suppose that Wi 6= ;. Then, for 1  i < `, dim(Wi) � 1  dim(Wi+1

)  dim(Wi),
where dim(Wj) denotes the complex dimension of Wj , 1  j  `. While the second
inequality is also true for the sequence, (dim(Vi))1i`, of real dimensions of the
sequence of real varieties Vi, the first inequality is definitely not true in general.

Theorem 38.10.3 enabled progress on several incidence questions (see [Zah15,
BS15]).

Aside from its applications in polynomial partitioning, Theorem 38.10.3 also
remedies a well-known anomaly – which is that the naive statement of Bézout
inequality, that the number of isolated solutions in Cn of a system of n polynomial
equations in n variables is bounded by the product of their degrees is no longer
true for isolated solutions in Rn. This is illustrated by the following well known
example [Ful98]. Let k = 3, and let

Q
1

= x
3

,

Q
2

= x
3

,

Q
3

=
2

X

i=1

0

@

d
Y

j=1

(xi � j)2

1

A .

The real variety defined by {Q
1

, Q
2

, Q
3

} is 0-dimensional, and has d2 isolated (in
R3) points, whereas the degree sequence is (d

1

, d
2

, d
3

) = (1, 1, 2d), and thus the
bound predicted by the naive Bézout inequality is equal to 2d.

38.11 APPLICATIONS

Computational real algebraic geometry finds applications in robotics, vision, com-
puter-aided design, geometric theorem proving, and other fields. Important prob-
lems in robotics include the kinematic modeling, the inverse kinematic solution, the
computation of the workspace and workspace singularities, and the planning of an
obstacle-avoiding motion of a robot in a cluttered environment—all arising from
the algebro-geometric nature of robot kinematics. In solid modeling, graphics, and
vision, almost all applications involve the description of surfaces, the generation of
various auxiliary surfaces such as blending and smoothing surfaces, the classifica-
tion of various algebraic surfaces, the algebraic or geometric invariants associated
with a surface, the e↵ect of various a�ne or projective transformations of a surface,
the description of surface boundaries, and so on.

To give examples of the nature of the solutions demanded by various appli-
cations, we discuss a few representative problems from robotics, engineering, and
computer science.

ROBOT MOTION PLANNING

Given the initial and desired configurations of a robot (composed of rigid subparts)

and a set of obstacles, find a collision-free continuous motion of the robot from the

initial configuration to the final configuration.
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The algorithm proceeds in several steps. The first step translates the problem
to configuration space, a parameter space modeled as a low-dimensional alge-
braic manifold (assuming that the obstacles and the robot subparts are bounded
by piecewise algebraic surfaces). The second step computes the set of configura-
tions that avoid collisions and produces a semialgebraic description of this so-called
“free space” (subspaces of the configuration space). Since the initial and final con-
figurations correspond to two points in the configuration space, we simply have
to test whether they lie in the same connected component of the free space. If
so, they can be connected by a piecewise algebraic path. Such a path gives rise
to an obstacle-avoiding motion of the robot(s) and can be computed using either
Collins’s CAD [SS83], yielding an algorithm with doubly-exponential time complex-
ity, or by computing a roadmap (Theorem 38.8.1) which yields a singly exponential
algorithm.

OFFSET SURFACE CONSTRUCTION IN SOLID MODELING

Given a polynomial f(x, y, z), whose zeros define an algebraic surface in three-

dimensional space, compute the envelope of a family of spheres of radius r whose

centers lie on the surface f . Such a surface is called a (two-sided) o↵set surface
of f .

Let p = hx, y, zi be a point on the o↵set surface and q = hu, v, wi be a footprint
of p on f ; that is, q is the point at which a normal from p to f meets f . Let
~t
1

= ht
1,1, t1,2, t1,3i and ~t

2

= ht
2,1, t2,2, t2,3i be two linearly independent tangent

vectors to f at the point q. Then, we see that the system of polynomial equations

(x� u)2 + (y � v)2 + (z � w)2 � r2 = 0,

f(u, v, w) = 0,

(x� u)t
1,1 + (y � v)t

1,2 + (z � w)t
1,3 = 0,

(x� u)t
2,1 + (y � v)t

2,2 + (z � w)t
2,3 = 0,

describes a surface in the (x, y, z, u, v, w) six-dimensional space, which, when pro-
jected into the three-dimensional space with coordinates (x, y, z), gives the o↵set
surface in an implicit form. The o↵set surface is computed by simply eliminating
the variables u, v, w from the preceding set of equations.

This approach (the envelope method) of computing the o↵set surface has
several problematic features: the method does not deal with self-intersection in a
clean way and, sometimes, generates additional points not on the o↵set surface.
For a discussion of these and several other related problems in solid modeling,
see [Hof89] and Chapter 56 of this Handbook.

GEOMETRIC THEOREM PROVING

Given a geometric statement consisting of a finite set of hypotheses and a conclu-

sion,

Hypotheses : f
1

(x
1

, . . . , xk) = 0 , . . . , fr(x1

, . . . , xk) = 0

Conclusion : g(x
1

, . . . , xk) = 0
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decide whether the conclusion g = 0 is a consequence of the hypotheses ((f
1

= 0)
^ · · · ^ (fr = 0)).

Thus we need to determine whether the following universally quantified first-
order sentence holds:

⇣

8 x
1

, . . . , xk

⌘



⇣

(f
1

= 0) ^ · · · ^ (fr = 0)
⌘

) g = 0

�

.

One way to solve the problem is by first translating it into the form: decide if
the following existentially quantified first-order sentence is unsatisfiable:

⇣

9 x
1

, . . . , xk, z
⌘



(f
1

= 0) ^ · · · ^ (fr = 0) ^ (gz � 1) = 0

�

.

When the underlying domain is assumed to be the field of real numbers, then we
may simply check whether the following multivariate polynomial (in x

1

, . . . , xk, z)
has no real root:

f2

1

+ · · ·+ f2

r + (gz � 1)2.

If, on the other hand, the underlying domain is assumed to be the field of complex
numbers (an algebraically closed field), then other tools from computational algebra
are used (e.g., techniques based on Hilbert’s Nullstellensatz). In the general setting,
some techniques based on Ritt-Wu characteristic sets have proven very powerful.
See [Cho88].

For another approach to geometric theorem proving, see Section 59.4.

CONNECTION TO SEMIDEFINITE PROGRAMMING

Checking global nonnegativity of a function of several variables occupies a central
role in many areas of applied mathematics, e.g., optimization problems with poly-
nomial objectives and constraints, as in quadratic, linear and boolean programming
formulations. These problems have been shown to be NP-hard in the most general
setting, but do admit good approximations involving polynomial-time computable
relaxations (see Parillo [Par00]).

Provide checkable conditions or procedure for verifying the validity of the propo-

sition

F (x
1

, . . . , xk) � 0, 8x
1

, . . . , xk,

where F is a multivariate polynomial in the ring of multivariate polynomials over

the reals, R[x
1

, . . . , xk].
An obvious necessary condition for F to be globally nonnegative is that it has

even degree. On the other hand, a rather simple su�cient condition for a real-valued
polynomial F (x) to be globally nonnegative is the existence of a sum-of-squares
decomposition:

F (x
1

, . . . , xk) =
X

i

f2

i (x1

, . . . , xk), fi(x1

, . . . , xk) 2 R[x
1

, . . . , xk].

Thus one way to solve the global nonnegativity problem is by finding a sum-
of-squares decomposition. Note that since there exist globally nonnegative poly-
nomials not admitting a sum-of-squares decomposition (e.g., the Motzkin form
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x4y2+x2y4+z6�3x2y2z2), the procedure suggested below does not give a solution
to the problem in all situations.

The procedure can be described as follows: express the given polynomial F (x
1

,
. . ., xk) of degree 2d as a quadratic form in all the monomials of degree less than
or equal to d:

F (x
1

, . . . , xk) = zTQz, z = [1, x
1

, . . . , xk, x1

x
2

, . . . xd
k],

where Q is a constant matrix to be determined. If the above quadratic form can
be solved for a positive semidefinite Q, then F (x

1

, . . . , xk) is globally nonnegative.
Since the variables in z are not algebraically independent, the matrix Q is not
unique, but lives in an a�ne subspace. Thus, we need to determine if the intersec-
tion of this a�ne subspace and the positive semidefinite matrix cone is nonempty.
This problem can be solved by a semidefinite programming feasibility problem

trace(zzTQ) = F (x
1

, . . . , xk),

Q ⌫ 0.

The dimensions of the matrix inequality are
�

k+d
d

�

⇥
�

k+d
d

�

and is polynomial
for fixed number of variables (k) or fixed degree (d). Thus our question reduces to
e�ciently solvable semidefinite programming (SDP) problems.

38.12 SOURCES AND RELATED MATERIAL

SURVEYS

[Mis93]: A textbook for algorithmic algebra covering Gröbner bases, characteristic
sets, resultants, and real algebra. Chapter 8 gives many details of the classical
results in computational real algebra.

[BPRbook] A textbook on algorithm in real algebraic geometry covering modern
techniques and algorithms for solving the fundamental algorithmic problems in
semi-algebraic geometry. Contains all relevant mathematical background including
the theory of general real closed fields, real algebra, algebraic topology and Morse
theory etc.

[Bas08] A survey of algorithms in semi-algebraic geometry and topology with par-
ticular emphasis on the connections to discrete and computational geometry.

[BHK+11] A collection of survey articles on modern developments in real algebraic
geometry including modern developments in algorithmic real algebraic geometry.

[CJ98]: An anthology of key papers in computational real algebra and real algebraic
geometry. Contains reprints of the following papers cited in this chapter: [BPR98,
Col75, Ren91, Tar51].

[AB88]: A special issue of the J. Symbolic Comput. on computational real algebraic
geometry. Contains several papers ([DH88, Gri88, GV88] cited here) addressing
many key research problems in this area.

[BR90]: A very accessible and self-contained textbook on real algebra and real
algebraic geometry.
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[BCR98]: A self-contained text book on real algebra and real algebraic geometry.

[HRR91]: A survey of many classical and recent results in computational real alge-
bra.

[Cha94]: A survey of the connections among computational geometry, computa-
tional algebra, and computational real algebraic geometry.

[Tar51]: Primary reference for Tarski’s classical result on the decidability of ele-
mentary algebra.

[Col75]: Collins’s work improving the complexity of Tarski’s solution for the decision
problem [Tar51]. Also, introduces the concept of cylindrical algebraic decomposi-
tion (CAD).

[Ren91]: A survey of some recent results, improving the complexity of the deci-
sion problem and quantifier elimination problem for the first-order theory of reals.
This is mostly a summary of the results first given in a sequence of papers by
Renegar [Ren92a, Ren92b, Ren92c].

[Lat91]: A comprehensive textbook covering various aspects of robot motion plan-
ning problems and di↵erent solution techniques. Chapter 5 includes a description
of the connection between the motion planning problem and computational real
algebraic geometry.

[SS83]: A classic paper in robotics showing the connection between the robot motion
planning problem and the connectivity of semialgebraic sets using CAD. Contains
several improved algorithmic results in computational real algebra.

[Can87]: Gives a singly-exponential time algorithm for the robot motion planning
problem and provides complexity improvement for many key problems in compu-
tational real algebra.

[Hof89]: A comprehensive textbook covering various computational algebraic tech-
niques with applications to solid modeling. Contains a very readable description of
Gröbner bases algorithms.

[Cho88]: A monograph on geometric theorem proving using Ritt-Wu characteristic
sets. Includes computer-generated proofs of many classical geometric theorems.
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Chapter 47: Algorithmic motion planning
Chapter 48: Robotics
Chapter 56: Solid modeling
Chapter 59: Geometric applications of the Grassmann-Cayley algebra
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Mathématiques. Hermann, Paris, 1990. 29

[BR10] S. Basu and M.-F. Roy. Bounding the radii of balls meeting every connected com-

ponent of semi-algebraic sets. J. Symbolic Comput., 45(12):1270–1279, 2010. 21

[BR14] Saugata Basu and Marie-Françoise Roy. Divide and conquer roadmap for algebraic

sets. Discrete Comput. Geom., 52(2):278–343, 2014. 19, 20

[BRSEDS14] S. Basu, M.-F. Roy, M. Safey El Din, and É. Schost. A baby step–giant step roadmap
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in three dimensions. Combin. Probab. Comput., 21(4):597–610, 2012. 24, 25

[Lat91] J.-C. Latombe. Robot Motion Planning, volume 124 of International Series in En-

gineering and Computer Science. Kluwer Academic Publishers Group, Dordrecht,

1991. 30

[Mat02] J. Matoušek. Lectures on discrete geometry, volume 212 of Graduate Texts in Math-

ematics. Springer-Verlag, New York, 2002. 24

[Mil64] J. Milnor. On the Betti numbers of real varieties. Proc. Amer. Math. Soc., 15:275–

280, 1964. 17

[Mis93] Bhubaneswar Mishra. Algorithmic algebra. Texts and Monographs in Computer

Science. Springer-Verlag, New York, 1993. 29

[MMP96] J. L. Montaña, J. E. Morais, and Luis M. Pardo. Lower bounds for arithmetic

networks. II. Sum of Betti numbers. Appl. Algebra Engrg. Comm. Comput., 7(1):41–

51, 1996. 18
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