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We present a new approach to segmenting multiple time seriesby analyzing the dynamics of cluster
formation and re-arrangement around putative segment boundaries. This approach finds application
in distilling large numbers of gene expression profiles intotemporal relationships underlying biolog-
ical processes. By directly minimizing information-theoretic measures of segmentation quality de-
rived from Kullback-Leibler (KL) divergences, our formulation reveals clusters of genes along with
a segmentation such that clusters show concerted behavior within segments but exhibit significant
re-grouping across segmentation boundaries. The results of the segmentation algorithm can be sum-
marized as Gantt charts revealing temporal dependencies inthe ordering of key biological processes.
Applications to the yeast metabolic cycle and the yeast cellcycle are described.

1. Introduction

Time course analysis has become an important tool for the study of developmental, disease pro-
gression, and cyclical biological processes, e.g., the cell cycle [8], metabolic cycle [9], and even
entire life cycles. The growing affordability of microarray screens has fostered the generation
of many time series datasets. Recent research efforts have considered using static measurements
to “fill in the gaps” in the time series data [7], quantifying timing differences in gene expres-
sion [11], and reconstructing regulatory relationships [6].

One of the attractions of time series analysis is its promiseto reveal temporal relationships
underlying biological processes: which process occurs before what, what are the “checkpoints”
that must be satisfied (and when), and whether there can be alternative pathways of time se-
ries progression. Although such analysis can be conducted by tracking individual genes whose
function is known, we desire to automatically mine, in an unsupervised manner, temporal rela-
tionships involvinggroups of genes, which are nota priori defined. In particular, we desire to
identify both segments of the time course where groups show concerted behavior and boundaries
between segments where there is significant “re-grouping” of genes. We cast this problem as a
form of time series segmentation where the segmentation criterion is driven by measures over
cluster dynamics.

It is important to contrast our goals with prior work. Typical works on time series segmen-
tation [3] are focused on segmenting a single time series whereas we are focused on simultane-
ously segmenting multiple time series. Typical works on segmentation view it as a problem of
clustering time points with the constraint that data samples in a cluster must belong to succes-
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sive time points, whereas we have the twin goals of clustering time points as well as clustering
the genes. Typical works on segmentation are focused on homogeneity assumptions within a
segment whereas we explicitly model each segment as a heterogeneous mix of multiple clus-
ters which can themselves be redefined across segments. Our work is hence directly targeted to
mining datasets involving thousands of genes where there are complex inter-relationships and
re-organizations underlying the dataset.
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Figure 1. Preview of results: the yeast metabolic cycle dataset (top row) involves the staged coordination of a reductive,
charging phase (time points [1–6]), followed by oxidative metabolism ([6–10]), followed by reductive metabolism ([10–
13]). Contingency tables capture the concerted grouping ofgenes within segments (second row) as well as the re-
groupings between segments (third row). Observe that the contingency tables in the second row involve significant
enrichments whereas the tables in the third row approximatea uniform distribution. Gantt chart views (bottom row)
depict the temporal coordination of biological processes underlying the dataset. Only some of the enriched functions
are displayed, for lack of space.

As an example, consider the yeast metabolic cycle (YMC), using the dataset of Tuet
al. [9]. The YMC is a carefully coordinated mechanism between a reductive charging (R/C)
phase involving degradation and ubiquination activities,followed by oxidative metabolism (Ox),
where oxygen is used up to generate adenosine triphosphates(ATPs), culminating in reductive
metabolism (R/B) characterized by decrease in oxygen uptake and emphasis onDNA replica-
tion and cell division. Different genes are central to each of these phases. Tuet al. analyzed



July 20, 2007 9:6 Proceedings Trim Size: 9.75in x 6.5in goalie

3

this time course by tracking ‘sentinel’ genes showing periodic behavior and arrived at a segmen-
tation into nine intervals, corresponding to three complete instantiations of the YMC. One of
these cycles, spanning 3 segments and 13 time points, is depicted in Fig. 1 (top). We analyzed
3602 gene expression profiles over a 15 hour period using our segmentation algorithm and it
identified the same segmentation. Further, the clusters in each of our segments are enriched in
the corresponding groups of genes, and demonstrate significant re-grouping across segments, as
shown in Fig. 1 (middle two rows). These time-bounded enrichments can be summarized using
a Gantt chart, as shown in Fig. 1 (bottom), which identifies biological processes as they become
active or inactive in different segments. We reiterate thatthe time point boundaries, the groups
of genes important in each segment, and the functions enriched in them, are inferred automati-
cally. No explicit modeling of periodicity or other prior biological knowledge has been imparted
to the segmentation algorithm.
2. Problem Formulation

We are given multiple vectors of measurementsG = {g1,g2, . . . ,gν}, where eachgi is a
time series overT = {t1, t2, . . . , tl}. The components ofgi can refer to absolute/relative
gene expression values or some other processed version of the same, such as mean-centered
and log-transformed values, or even coefficients in a principal component decomposition of
G. The problem of segmentation is to expressT as a sequence of segments or windows:
{wta

t1
, wtb

ta
, . . . , wtT

tk
} where each windowwte

ts
, ts ≤ te, is a set of consecutive time points be-

ginning at (and inclusive of) time pointts and ending at (and inclusive of) time pointte. Note
that adjacent windows have one time point overlap since we view partitions of the time course
in terms of intervals rather than individual time points.

We first describe a way to evaluate a given segmentation before presenting an algorithm for
identifying segmentations. We begin by studying the case ofjust two adjacent windows:wtb

ta

andwtc

tb
. Given two clusterings of genes, one for each of the windows,our evaluation criterion

requires that these two sets of clusters are highly dissimilar, i.e., genes clustered together in
some cluster ofwtb

ta
move out of their clusters and are clustered together with different genes in

wtc

tb
. For instance, given a dataset with 18 genes and 3 clusters ineither window, the evaluation

criterion prefers contingency table (a) below over tables (b) and (c). Here the rows refer to
clusters ofwtb

ta
and the columns refer to clusters ofwtc

tb
. We achieve this by enforcing that

the (projected) row-wise and column-wise distributions from the contingency table resemble a
uniform distribution.

2 2 2

2 2 2
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0 0 6
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Formally, given two windowswtb

ta
andwtc

tb
, which have been clustered intor and c clusters

(respectively), we define ther × c contingency table over the clusterings. Entrynij in the
(i, j)th cell of the table represents the overlap between the genes clustered together in clusteri

of wtb

ta
and in clusterj of wtc

tb
. The sizes of the clusters inwtb

ta
are given by the column-wise sums

across each row:ni. =
∑

j nij , while the sizes of clusters inwtc

tb
are given by row-wise sums
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across each column:n.j =
∑

i nij . Using these, we define(r + c) probability distributions,
one for each row and one for each column. The distribution corresponding to rowi, Ri, takes
values from the column indices, i.e.,1 . . . c, with valuej (1 ≤ j ≤ c) occurring with probability
nij

ni.
. Similarly, the column distribution for columnj, Cj , takes values from the row indices, i.e.,

1 . . . r, with valuei (1 ≤ i ≤ r) occurring with probabilitynij

n.j
. We capture the deviation of

these row-wise and column-wise distributions w.r.t. the uniform distribution asa:

F =
1

r

r
∑

i=1

DKL(Ri||U(
1

c
)) +

1

c

c
∑

j=1

DKL(Cj ||U(
1

r
)) (1)

whereDKL(·||·) is the Kullback-Leibler (KL) divergence between two probability distributions:

DKL(p||q) =
∑

x

p(x) log
p(x)

q(x)

with the limits 0 log 0
q(x) → 0, p(x) log p(x)

0 → ∞ implied, andU(·) denotes the uniform
distribution whose argument is the probability of any outcome. The optimization problem is
then to minimizeF .

Observe that the combinations of ther row-wise KL-divergences andc column-wise KL-
divergences are averaged to formF . This is to mitigate the effect of lopsided contingency tables
(r ≫ c or c ≫ r) wherein it is possible to optimizeF by focusing on the “longer” dimension
without really ensuring that the other dimension’s projections are close to uniform. Finally, note
that Eq. 1 can be readily extended to the case where we have more than two segmentsb.

Minimizing F will yield row-wise and column-wise distribution estimates that are close
to the respective uniform distributions and, hence, resultin independent clusterings across the
neighboring windows. However, there are special cases whenF could have a minimum, but
the resulting clustering doesn’t quite meet our intuition of independent clusterings and hence, to
avoid these cases, we regularizeF with additional terms as described later.

3. Clustering across windows

We now turn our attention to the clustering algorithm that must balance two conflicting criteria:
the clusters across neighboring windows must be independent but the clusters must exhibit con-
certed behavior within a window. In typical clustering algorithms, each cluster has a prototype
and the data vectors are assigned to the nearest cluster based on some distance measure from
these prototypes. The prototypes are iteratively improvedto find the best possible clusters.

Again, we develop our notation for two adjacent windows and the extension to greater num-
bers of windows is straightforward. Given a gene vectorgk, let its projection onto the ‘left’ win-
dowwtb

ta
be referred to asxk, and its projection onto the ‘right’ windowwtc

tb
be referred to asyk.

aAn alternate formulation is to cast the uniform distribution requirement over all the contingency table entries rather
than over row and column marginals separately as done here. However, our approach is more intuitive since the converse
problem of finding highly dependent clusters then reduces tosimply maximizing Eq. 1. This converse problem is known
as associative clustering and has been previous studied [2]using measures such as the Bayes factor.
bThe objective function defined in Eq. 1 has connections to theprinciple of minimum discrimination information (MDI)
introduced by Kullback for the analysis of contingency tables [4]. The MDI principle states that ifq is the assumed or
true distribution, the estimated distributionp must be chosen such thatDKL(p||q) is minimized. In our case,q is the
uniform distribution desired andp is the distribution estimated from observed data.
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Recall that sets of such projections are clustered separately such that the clusters are maximally
dissimilar. Letr andc be the number of clusters forx andy vectors, which results in ar×c con-
tingency table. Letm(x)

i be the prototype vector for theith cluster of thex vectors. The assign-
ment of a data vector to the clusters is given by the probability distributionV(xk) = {Vi(xk)},
where

∑r

i=1 Vi(xk) = 1. The probabilitiesVi(xk) are the cluster membership indicator vari-
ables, i.e., the probability that data samplek is assigned to clusteri. Similar cluster prototypes
m

(y)
j , distributionsV(yk), and cluster indicator variablesVj(yk) are defined fory vectors as

well. Then contingency table counts can be calculated asnij =
∑

k Vi(xk)Vj(yk). In hard
clustering algorithms, like the traditionalk-means, each data sample is assigned to the nearest
cluster with a probability of 1. However, calculatingnij using hard memberships renders the
functionF in Eq 1 non-differentiable at certain points, as a result of which we cannot lever-
age classical numerical optimization algorithms to minimizeF . To avoid this problem, cluster
indicator variables are typically parameterized as a smooth function that is continuously differ-
entiable and which assigns a non-zero cluster membership probability for each data sample, i.e
Vi(xk), Vi(yk) ∈ (0, 1). We present a novel smoothing approximation that tracks thecluster
indicator variables with high accuracy. First, we define

γ(i,i′)(xk) =
||xk − m

(x)
i′ ||2 − ||xk − m

(x)
i ||2

D
, 1 ≤ i, i′ ≤ r

whereD is the point-set diameter

D = max
k,k′

||xk − xk′ ||2, 1 ≤ k, k′ ≤ ν

A well known approximation tomin
i′

γ(i,i′)(xk) is the Kreisselmeier-Steinhauser (KS) envelope

function [10] given by

KSi(xk) =
−1

ρ
ln
[

r
∑

i′=1

exp(−ρ γ(i,i′)(xk))
]

whereρ ≫ 0. TheKS function is a smooth function which is differentiable to anydegree.
Using this the cluster memberships are redefined as:

Vi(xk) = Z(x)−1 exp
[

ρ KSi(xk)
]

whereZ(x) is a normalizing function such that
∑r

i Vi(xk) = 1. The cluster memberships
for the “right” window, Vj(yk), are also smoothed similarly. If the data sample belongs to a
cluster, the cluster membership probability is slightly less than 1 and for all the other clusters it
is slightly greater than 0.

Minimizing the functionF in Eq 1 should ideally yield clusters that are independent across
windows and local within each window. However, using smoothcluster prototypes gives rise
to an alternative minimum solution where each data sample isassigned with uniform probabil-
ity to every cluster. Recall the contingency table example from Sec 2; each of the 18 samples
can be assigned to the 3 row clusters (and 3 column clusters) with probability [1/3, 1/3, 1/3]

and the estimate of count matrix from these soft counts wouldstill be uniform in each cell
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(
∑

k Vi(xk)Vj(yk) = 2). To avoid degenerate solutions such as these, we require maximum de-
viation of individual data vector probabilities (Vi(xk) andVj(yk)) from the uniform distribution
over the number of clusters. This leads to the regularized objective function:

F =
λ

r

r
∑

i=1

DKL(Ri||U(
1

c
)) +

λ

c

c
∑

j=1

DKL(Cj ||U(
1

r
))

−
1

ν

ν
∑

k=1

DKL(V(xk)||U(
1

r
)) −

1

ν

ν
∑

k=1

DKL(V(yk)||U(
1

c
))

(2)

whereλ is the weight, set to a value greater than 1, to give more emphasis to minimizing the
row and column wise distributions. This also enforces equalcluster sizes. Substituting the
KL-divergences in Eq. 2:

F =
λ

r

r
∑

i=1

c
∑

j=1

∑ν

k=1 Vi(xk)Vj(yk)
∑ν

k=1 Vi(xk)
log2

(

∑ν

k=1 Vi(xk)Vj(yk)
∑ν

k=1 Vi(xk)

/1

c

)

+
λ

c

c
∑

j=1

r
∑

i=1

∑ν

k=1 Vi(xk)Vj(yk)
∑ν

k=1 Vi(yk)
log2

(

∑ν

k=1 Vi(xk)Vj(yk)
∑ν

k=1 Vi(yk)

/1

r

)

−
1

ν

ν
∑

k=1

r
∑

i=1

Vi(xk) log2

(

∑

k

Vi(xk)
/1

r

)

−
1

ν

ν
∑

k=1

c
∑

j=1

Vj(yk) log2

(

∑

k

Vj(yk)
/1

c

)

The derivative of this function w.r.t the prototypesm
(x)
i is given by:

∇
m

(x)
i

F =
1

ln(2)

r
∑

i′=1

ν
∑

k=1

(

λ

r

{

c
∑

j=1

[

1 + ln
(

∑ν

k′=1 Vi′(xk′ )Vj(yk′ )
∑ν

k′=1 Vi′(xk′ )

/1

c

)]

[ Vj(yk)
∑ν

k′=1 Vi′ (xk′ )
−

∑ν

k′=1 Vi′ (xk′ )Vj(yk′ )
∑ν

k′=1(Vi′ (xk′ ))2

]

}

−
λ

c

{

c
∑

j=1

[

1 + ln
(

∑ν

k′=1 Vi′(xk′ )Vj(yk′ )
∑ν

k′=1 Vj(yk′ )

/1

r

)][ Vj(yk)
∑ν

k′=1 Vj(yk′ )

]

}

−
1

ν

[

1 + ln(Vi(xk)
/1

r
)
]

)

×∇
m

(x)
i

Vi′ (xk)

where

∇
m

(x)
i

Vi′(xk) =
2ρ(xk − m

(x)
i )

D

(

δi′,iVi(xk) − exp(−ργ(i′,i)(xk))(Vi′ (xk))2Z(x)

+

r
∑

i′′=1

[

(Vi′′ (xk))2 exp(−ργ(i′′,i)(xk))Vi′ (xk)Z(x)
]

− Vi(xk)Vi′(xk)

)

Hereδi′,i is the Kronecker’s delta. The index variables are as follows: i, i′, andi′′ over the
clusters inx vectors,j over the clusters in they vectors, andk andk′ over the data vectors. The
derivatives w.r.t. prototypesm(y)

j are calculated analogously.
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4. Segmentation Algorithm

Let T = {t1, t2, . . . , tl} be the given time series data set, andlmin andlmax be the minimum
and maximum window lengths respectively. For each time point ta ∈ T , we define the set of
windows starting fromta asSta

= {wtb

ta
|lmin ≤ tb − ta +1 ≤ lmax}. Given a windowwtb

ta
, the

choices for the next window are given byStb
, the set of windows starting formtb. We experi-

mented with both dynamic programming and greedy algorithmsbut the results were not qualita-
tively different and we present the greedy algorithm for ease of exposition. We cluster the data
in wtb

ta
simultaneously with each of the windowswtc

tb
∈ Stb

using the objective function in Eq 2
and choose the windowwtc

tb
that has the minimum value for the objective function. Optimiza-

tion of the objective function for clustering is performed using the conjugate gradient procedure
in the LANCELOT FORTRAN package for optimization. The initial cluster prototypes are set
using individualk-means clusters in each window. The conjugate gradient procedure iteratively
improves these initial prototypes till a local minimum of the objective function is attained. Since
local optimization procedures are sensitive to initialization, we perform 100 random restarts of
the procedure (each time with different k-means prototypesfound in individual windows) and
choose the best (minimum) of the optimized solutions as the score for the next window choice.
The window corresponding to the minimum of these best choices is selected as the next window.
This process is continued till we reach the end of the time course.

5. Experiments

Datasets: Our experimental datasets constitute gene expression measurements spanning the
yeast metabolic cycle (YMC) and the yeast cell cycle (YCC). As stated earlier, the YMC
dataset [9] consists of 36 time points collected over 3 continuous cycles. The original dataset
consists of 6555 unique genes from theS. cerevisiae genome. We first eliminated those genes
that do not have an annotation in any GO biological process category (revision 4.205 of GO
released on 14 March 2007), resulting in a universal set of 3602 genes. The gene expression val-
ues were log transformed (base 10) and normalized such that the mean expression of each gene
across all time points is zero. To segment this dataset we experimented with the number of clus-
ters in each segment ranging from 3 to 15, a minimum window length lmin of 4 and maximum
window lengthlmax of 7, andλ = 1.4. Theλ value was adjusted to give approximately equal
sized clusters with good intra-cluster similarities. The YCC was taken from the well known
experiment of Spellman et al. [8]. Due to lack of space, we describe our analysis on only the
α−factor time course from [8], which has 6076 genes with 18 timepoints over approximately
2 cycles. We considered the genes with no missing values and mean centered each gene’s ex-
pression across all time points to zero. From this data, we removed the genes that do not have
an annotation in GO biological process category which resulted in a final set of 2196 genes. To
segment this dataset, again we ranged from 3 to 15 clusters ineach window, a minimum window
lengthlmin of 3 and maximum window lengthlmax of 5, andλ = 1.25 (adjusted as before).
Evaluation metrics: We evaluate our clusterings and segmentations in five ways: cluster sta-
bility, cluster reproducibility, functional enrichment,segmentation quality, and segmentation
sensitivity. We assesscluster stability using a bootstrap procedure to determine significance of
genes brought together. Recall that each window except the first and last windows has two sets
of clusters, one set independent with respect to the previous window and the other independent
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with respect to the next window. We are interested in the genes that are significantly clustered
together in these two sets of clusters, as they represent thegenes that are specific to the window
under consideration. We calculate a contingency table between these two clusterings for each
window (excluding the first and the last window). Each cell inthe contingency table represents
the number of genes that are together across the two independent sets of clusters. We randomly
sample 1000 sets of clusters and compute the contingency tables w.r.t. them. The distribution of
counts in each cell of the table was tabulated and found to be approximately normal (Shapiro-
Wilk normality test withp = 0.05). We now evaluate each cell of the actual contingency table
with respect to the corresponding random distribution and retain only those cells that have more
genes than that observed at random withp < 0.05 (Bonferroni corrected with the number of
cross clusters to account for multiple hypothesis testing). To ensurereproducibility of clusters,
we retain only those genes in each significant cell of the contingency table that are together
in more than 150 of the 200 clusterings (conducted with different initializations). For the first
and last windows, which have only 100 randomly initialized clusterings, we retain those genes
that are clustered together in more than 75 of the 100 clusterings. After the above two steps,
we performfunctional enrichment using the GO biological process ontology (since we are
tracking biological processes) over the selected clustersof genes. A hypergeometricp−value is
calculated for each GO biological process term, and an appropriate cutoff is chosen using a false
discovery rate (FDR)q− level of 0.01.

Thesegmentation quality is calculated as a partition distance [5] between the “true”seg-
mentation (from the literature of the YMC and YCC) to the segmentations computed by our
algorithm. Since this measure requires partitions with no overlap between blocks, we view each
segment/window as a set of unit-sized intervals, rather than time points. Thus, the windoww4

1

has carinality 3 and two elements in common withz4
2 . Given two segmentationsS1 andS2, the

partition distance is given by:

PD = −
∑

w
tb
ta

∈S1

∑

z
tb
ta

∈S2

|wtb

ta
∩ztb

ta
| log2

|wtb

ta
∩ ztb

ta
|

|wtb

ta
|

−
∑

z
tb
ta

∈S2

∑

w
tb
ta

∈S1

|wtb

ta
∩ztb

ta
| log2

|wtb

ta
∩ ztb

ta
|

|ztb

ta
|

The segementation sensitivityto variations in the number of clusters is calculated as the
ratio of average KL-divergences between the segments to themaximum possible KL divergence.
Suppose we have|S| windows in a given segmentationS = {wta

t1
, wtb

ta
, . . . , wtk

tj
, wtl

tk
} with c

clusters in each window. LetFmax be the objective function value for the maximally similar
clustering (thec×c diagonal contingency table as in the example in section 2). Then the measure
we compute is

KLavg =
1

|S| − 1

[

F
{w

ta
t1

,w
tb
ta

}

Fmax

+
F

{w
tc
tb

,w
td
tc

}

Fmax

+ . . . +
F

{w
tk
tj

,w
tl
tk

}

Fmax

]

whereF
{w

tb
ta

,w
tc
tb

}
is the objective function value obtained during clusteringthe pair of adjacent

windows{wtb

ta
, wtc

tb
}. Lower values of this ratio indicate that the segmentation captures maximal

independence between adjacent segments while higher values indicate the clusters obtained are
more similar in adjacent segments.
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Results

YMC: The segmentation generated for the minimum number (3) of clusters is: [1-6], [6-10],
[10-13], [13-16], [16-21], [21-26], [26-31], [31-36], which correspond to alternating R/B, R/C,
and Ox phases. The GO categories enriched (p < 1e−7) in one cycle of this dataset has already
been depicted in Fig. 1. This segmentation is stable upto a setting of 8 clusters after which it
begins to deviate from the “true” segmentation (discussed further below).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

mitotic metaphase/anaphase transition
mitotic spindle elongation

mitotic sister chromatid cohesion
G1/S−specific transcription

RNA processing
strand elongation

DNA replication initiation
regulation of exit from mitosis

cytokinesis, completion of separation

timepoints

Figure 2. Gantt chart resulting from segmentation of Spellman et al. dataset. To preserve space, only some of the
enriched GO biological process terms are shown.

YCC: The segmentation (Fig. 2) generated for YCC—[1-3], [3-6], [6-9], [9-12], [12-15], [15-
18]—is also periodic with the stages approximately corresponding to alternating M/G1,{G1,S},
{G2,M} phases. Note that each phase is of very short length in this experiment as compared to
YMC: the phases M/G1, G1, S each last for approximately 2 timepoints, while the G2 phase
lasts only for one time point. Due to our minimum window length of 3 (set so that we recover
significant clusterings and re-groupings), we cannot resolve these short-lived phases. A possible
approach is to use continuous-representations such as spline fits to gain greater resolution of
data sampling. Nevertheless, the key events occurring in these segments are retrieved with high
specificity (p < 1e − 7) as shown in Fig. 2.
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Figure 3. Tracking (left) segmentation sensitivity and (right) segmentation quality with number of clusters.

The effect of the number of clusters on segmentation characteristics is studied in Fig. 3. In
Fig. 3 (left), we see that as the number of clusters increases, it is increasingly difficult to obtain
independent clusterings and hence, for higher values of thenumber of clusters, the segmenta-
tion problem actually resembles associative clustering (observe that this curve tends toward a
KLavg value of 0.5). Fig. 3 (right) tracks the segmentation quality, and shows that the correct
segmentation is recovered for many settings in the lower range for number of clusters but, as
the number of clusters increases, while there are fewer choices for the segmentation algorithm,
all of which considerably deviate from the true segmentation. Nevertheless, comparing the two
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plots, we see thatKLavg tracks the segmentation qualityPD well and hence can be a useful
surrogate for determining the “right” number of clusters.
Biological significance:One of the applications of our methods is to decode temporal relation-
ships between biological processes. Since cell division processes are enriched in both YCC and
YMC, we superimposed those segments of the two Gantt charts (from Fig. 1 and Fig. 2) and no-
ticed that the oxidative metabolism phase of YMC typically precedes the transition from G1 to S
in the YCC. Such a connection has been investigated in the literature by Futcher [1] but through
the use of a custom experiment observing metabolism during the course of the cell cycle. As
the budding yeast grows in size, it is hypothesized that the accummulation of carbohydrates is
one of the ways in which it gets past the size checkpoint controlling entry into S. This finding
demonstrates the potential for knowledge discovery by mining Gantt charts using our methods.
6. Discussion

We have presented a novel approach to simultaneously segment multiple time course data using
clusters and movement of data points across clusters as a driving criterion for optimization.
It is important to emphasize that our objective criteria arenaturally posed over contingency
tables, rather than over other indirect measures of clustermovement. Our approach recovers the
periodicity of the underlying biology even though the algorithm is not steered toward modeling
it. The Gantt charts resulting from our analysis can serve the basis for reconstructing temporal
dependencies underlying biological processes. In future work, we aim to develop richer models
of cluster re-organization, e.g., dynamic revisions in thenumber of clusters and split-and-merge
behaviors of clusters, leading to inference of complete temporal logic models.
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