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Major advances in genome science and molecular
technologies provide new opportunities at the
interface between basic biological research and

medical practice. The unprecedented completeness,
accuracy, and volume of genomic and molecular data
necessitate a new kind of computational biology for
translational research. Key challenges are standardization of
data capture and communication, organization of easily
accessible repositories, and algorithms for integrated analysis
based on heterogeneous sources of information. Also
required are new ways of using complementary clinical and
biological data, such as computational methods for
predicting disease phenotype from molecular and genetic
profiling. New combined experimental and computational
methods hold the promise of more accurate diagnosis and
prognosis as well as more effective prevention and therapy.

Introduction

Over the last two decades, our knowledge of cancer and its
causes has increased greatly. However, we still have few
examples of cures. This underscores the need for a clearer
understanding of the alterations in the biological circuitry
that lead to tumor development and growth. Sequencing of
the human genome and biotechnological advances have led to
the generation of large volumes of genome-scale data.
Combining this genome-scale molecular data with clinical
information provides new opportunities to discover how
perturbations in biological processes lead to disease. This
knowledge can be used to improve disease diagnosis,
prognosis, prevention, and therapy. However, the large scale
and diversity of both experimental and clinical data
necessitate that they be well-organized and computationally
accessible to research scientists for analysis and
interpretation. This review focuses on the challenges and
opportunities to combine clinical and genome-scale
molecular data, using computational approaches, to better
understand cancer biology and to translate this knowledge
into improved disease prevention and therapy.

Translational cancer research to improve disease
prevention and therapy. Cancer is a complex disease,
involving multiple and specific changes at the DNA level that
can be inherited or induced by environmental factors. There
are many different types and subtypes of cancer marked by
specific sets of molecular changes. Most of our current cancer
treatment efforts are focused on surgery for a curative
treatment and radiation and/or toxic drugs (chemotherapy)
to induce remissions. Candidates for successful cancer
therapy with surgery are few, and radiation and

chemotherapy suffer from lack of target specificity, leading to
serious side effects. Identifying cancer-specific molecular
changes and discovering how they can be used to increase
therapeutic specificity will lead to higher success rates and
fewer side effects.
Translational research seeks to identify and understand the

cause and effect of cancer-specific molecular defects and to
translate this ‘‘bench’’ knowledge to the clinic to improve
disease prevention and therapy. Examples of research
questions include, from a clinical perspective: what are the
molecular subtypes of cancer? What reliable molecular
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markers are available for early cancer detection (diagnostic)
and for predicting the course of disease (prognostic)? How do
we find better drugs and optimize therapy (development of
more specific drugs with lower toxicity) to suit an individual
patient’s molecular profile? From a molecular biology
perspective: can we accurately predict vulnerable point(s) in
molecular pathways that are potential therapeutic targets?
What specific drug or drug combination can target these
vulnerable points in the pathway? Can genotype and pathway
information be combined to predict the effect of a mutation
on disease or therapy?

Advances in our understanding of cancer-specific
molecular defects have led to improved cancer treatments.
For example, the protein kinase inhibitor imatinib (Gleevec)
was designed to treat chronic myelogenous leukemia (CML)
based on knowledge of the causative molecular defect—
translocation and dys-regulated BCR–ABL kinase. Protein
kinase inhibitors such as gefitinib (Iressa) and erlotinib
(Tarceva) are showing therapeutic promise by targeting
known molecular abnormalities of non-small cell lung cancer
(NSCLC). Similarly, antibody therapies such as Rituximab
(Rituxan), an anti-CD20 monoclonal antibody for non-
Hodgkin lymphoma; Cetuximab (Erbitux), an epidermal
growth factor receptor (EGFR)-binding antibody for
colorectal and head and neck cancer; Trastuzumab
(Herceptin), a monoclonal antibody that allows targeted
therapy in HER2 positive breast cancer; and Bevacizumab
(Avastin), a recombinant humanized antibody against

vascular endothelial growth factor (VEGF) for metastatic
colorectal cancer are promising.
While these treatments based on molecular knowledge of

the cancer show promise, major challenges remain. For
instance, development of compensatory mutations induces
resistance to Gleevec and limits its use, while humanization
and effective delivery of antibodies is difficult [1].
Furthermore, the discovery and development of a new and
effective drug can cost US$0.8–US$1.7 billion [2]. A new drug
entering Phase I testing, where the drug is initially introduced
to human subjects, is estimated to have only an 8% chance of
reaching the market [2]. Failures can largely be attributed to
poor target selection or poor candidate drug selection,
leading to low drug effectiveness or toxicity. Development of
safe and effective therapies, such as small molecule protein
kinase inhibitors, at a reduced cost, requires better
understanding of therapeutic interaction of the inhibitor
with a range of targets and their effect on diverse cellular
processes [3].
Cancer cells can now be profiled on a genome scale using

new experimental techniques. We thus have an
unprecedented opportunity to comprehensively study cancer-
specific molecular processes. This study requires
computational tools to handle the large volume and diversity
of available information. Collection, standard organization,
aggregation, storage, integration, and analysis of diverse
genome-scale molecular data along with patient data collected
in the clinic will broaden our understanding of how cancer-

doi:10.1371/journal.pcbi.0030012.g001

Figure 1. Data Integration for Translational Cancer Research

Archival of clinical and molecular data in easily retrievable standardized formats, aggregation, integration, and data analysis will provide opportunities
for the next-generation biomedical discoveries that can impact cancer research and treatment.

PLoS Computational Biology | www.ploscompbiol.org February 2007 | Volume 3 | Issue 2 | e120002



specific molecular defects affect clinical outcome and will lead
to improved disease prevention and therapy (Figure 1).

Genome-Scale Molecular Data for Cancer Research
Genomic variation. Cancer is a genetic disease involving

point mutations, translocations, segmental amplifications,
and deletions in the genome that alter specific vulnerable
molecular points in cellular regulatory pathways. Analysis of
chromosomal changes by fluorescent in situ hybridization
(FISH)-based cytogenetic approaches including comparative
genomic hybridization (CGH), spectral karyotyping (SKY),
and multiplex-FISH (M-FISH) [4] have led to the
characterization of many cancer-associated chromosomal
abnormalities. Microarray techniques, e.g., array-CGH or
matrix-CGH, have become available to map regions of DNA
sequence from the cancer tissue that are amplified or reduced
compared to normal tissue [5]. Array-based technologies also
allow genome-wide measurement of single nucleotide
polymorphisms (SNPs) [6]. The international HapMap project
has identified millions of SNPs in different populations. The
data has been processed into haplotypes, sets of co-occurring
SNPs, and tag SNPs (SNPs that distinguish a set of common
haplotypes) that can be used to reduce the complexity of gene
association studies (http://www.hapmap.org) [7].

Epigenetic changes such as DNA methylation, histone

modification, and RNA silencing are involved in regulating
many cellular processes, including development, via gene
silencing (chromatin structure and transcription regulation)
and genetic imprinting. Specific DNA methylation alterations
have been identified in various neoplasms. For example,
aberrant promoter methylation associated with
transcriptional downregulation of tumor suppressor genes
has been found in basal cell carcinoma (BCC), cutaneous
squamous cell carcinoma (SCC), melanoma, and cutaneous
lymphoma [8]. Though not exhaustive, Table 1 gives a list of
publicly available cancer-relevant large genomic variation
repositories.
Several projects attempt to comprehensively study genomic

variation in cancer. The Cancer Genome Atlas (http://
cancergenome.nih.gov/index.asp) and the Sanger Institute’s
Cancer Genome Project (http://www.sanger.ac.uk/genetics/
CGP) aim to identify mostly somatic mutations in common
tumor types using next generation DNA sequencing
technology.
Gene transcript profiles. Global gene expression profiling

with DNA microarrays [9–11] has furthered our
understanding of the regulation of biological processes and
has become an indispensable tool in the study and
classification of human tumors. Semiquantitative profiles of
gene expression have been measured for many cancer types

Table 1. Genomic Variation Repositories

Type of Data Public Data Source

Cytogenetic and array-CGH databases Progenetix ([78]; http://www.progenetix.net), NCI and NCBI’s SKY/M-FISH (spectral

karyotyping/multiplex-FISH) and CGH Database ([79]; http://www.ncbi.nlm.nih.

gov/sky/skyweb.cgi

Chromosome aberrations databases Mitelman database of chromosome aberrations [80] http://cgap.nci.nih.gov/

Chromosomes/Mitelman, recurrent chromosome aberrations database http://

cgap.nci.nih.gov/Chromosomes/RecurrentAberrations, and the NCBI Map viewer

database

Human genomic polymorphism databases TSC (The SNP Consortium) database http://snp.cshl.org of nearly 1.8 million SNPs,

Database of Genomic Variants (DGV) from The Centre for Applied Genomic (TCAG)

http://projects.tcag.ca/variation/index.html containing large-scale variations such

as copy number polymorphisms (CNPs). dbSNP database of single base nucleotide

substitutions and short deletion and insertion polymorphisms from NHGRI

(National Human Genome Research Institute) and NCBI http://www.ncbi.nlm.nih.

gov/SNP/index.html.

Methylation database MethDB ([81,82] http://www.methdb.net for DNA methylation data

Somatic mutation in cancer Catalogue of somatic mutations in cancer (COSMIC) [83] (http://www.sanger.ac.

uk/genetics/CGP/cosmic)

doi:10.1371/journal.pcbi.0030012.t001

Table 2. Gene Expression Repositories

Public Data Source Data Description

Gene Expression Omnibus (GEO) [84] 4,439 experiments .100 organisms Public data deposition and query platform for expression dataa

ArrayExpress [85] 1,684 experiments; 1,170 arrays Public data repository for well-annotated microarray dataa

Stanford Microarray Database (SMD) [86] 1,1227 experiments; 43 organisms Public data deposition and query platform for expression dataa

Oncomine [68] 209 studies; 14,177 microarrays Comprehensive meta-analysis and data mining platform specific to cancer

biology

aMIAME-compliant and support the MAGE-ML submission format.
doi:10.1371/journal.pcbi.0030012.t002
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and subtypes [12,13]. Through unbiased comparative analysis
of these profiles, a subset of genes can be found that correlate
with tumor phenotype and can serve as diagnostic and
prognostic markers of disease. Disease-specific regulatory
programs can be studied using techniques such as chromatin
immunoprecipitation (ChIP) of tumor biopsies [14]. Several
large public compendiums of gene expression data generated
from diverse experimental methods also exist, some examples
of which are presented in Table 2.

Not all available cancer microarray data are generated
from gold-standard tissues or primary cell culture. Often,
immortalized cell line models of neoplastic disease are
studied because they are easier to access than
histopathologically characterized human tumors [15,16].
However, in vitro extended passaging of cell lines could lead
to accumulation of alterations and yield less representative
expression profiles and less stable disease phenotypes [17].
Additionally, the in vivo microenvironment affects tumor–
host interactions and causes variations in gene expression

and pathways. These changes make disease-specific
expression patterns difficult to infer from cell line data alone.
Nevertheless, mining and analysis of the large amount of
available cell line gene expression data promises new insights
into disease conditions.
Protein levels and modifications. Mass spectrometric

instruments and protein chip technology allow large-scale
analysis of proteins, their quantitative expression,
interactions, post-translational modifications, and
localization [18–25]. Proteomic profiling of clinical samples
ranging from tissues to biofluids (e.g., urine, sera, plasma,
whole blood, cerebrospinal fluid, and saliva) will help assess
disease development and progression, generate diagnostic
and prognostic disease markers, and predict patient response
to intervention. This information can be used to identify
regulatory networks and activated signaling events in
biological pathways, and can help characterize pathologically
benign and tumor tissue samples (Figure 2). Public proteomics
repositories that collect this data are now available, and

doi:10.1371/journal.pcbi.0030012.g002

Figure 2. Protein Profiling for Cancer Diagnosis and Prognosis

Generation of protein profiles using mass spectrometry is an example of an experimental technique that produces massive amounts of data that is
difficult to interpret without computational and statistical algorithms. For instance, comparison of disease versus control sample profiles can lead to
identification of disease-specific protein expression signatures, which could be used as diagnostic or prognostic markers. Aggregation of such data from
multiple sources and pooled analysis requires proper annotation of sample source, sample handling, and experiment information.
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relevant examples are listed in Table 3. Accurate protein
identification involving processing and identification of mass
spectral peaks, peptide sequencing, search algorithms, and
statistical validation of correct assignment of peptides and
proteins is challenging, often confounded by splice variants or
other protein isoforms [26–30].

Small RNAs. Small RNAs add an additional layer of
complexity to gene regulation [31]. Initially discovered in
plants and C. elegans, at least four subfamilies exist:
microRNAs (miRNAs), short interfering RNAs (siRNAs), tiny
noncoding RNAs (tncRNAs), and small modulatory RNAs
(smRNAs). miRNAs are small, ;21–24, nucleotide noncoding
endogenous RNAs involved in translational repression and
messenger RNA (mRNA) cleavage, which can potently
downregulate translation of specific mRNAs by targeted 39-
UTR binding. An increasing number of miRNAs have been
implicated in disease. For instance, a small cluster of miRNA
genes on Chromosome 13, c13orf25, appears to be involved in
B cell lymphoma [32]. Cell cycle regulation has been shown to
involve a miRNA regulatory circuit where c-Myc, a known
proto-oncogene upregulating E2F1 (a cell cycle regulator),
also regulates the expression of six miRNAs on Chromosome
13, two of which have been shown to downregulate E2F1 [33].
In the case of acute lymphoblastic leukemia (ALL), in studies
by Lu et al. (2005), miRNA transcriptional profiles have been

shown to better classify tumors by type and developmental
stage than mRNA profiles [34].
mRNA targets for several hundred miRNAs that are

expressed in human have been computationally predicted,
though few targets have been experimentally confirmed
([35,36], http://www.microrna.org). The lack of perfect base-
pair complementarity between the miRNA sequence and its
target and the short length of the miRNAs make accurate
prediction of miRNA genes and targets difficult.
Pathways. Pathway information is vital for understanding

biological processes and how they are disrupted or
reprogrammed in disease. However, collecting complex
pathway information in a usable form from diverse and
heterogeneous sources, including more than 220 pathway
databases (http://pathguide.org), is a major challenge [37]. A
number of pathway database efforts seek to ameliorate the
situation by making pathway data more accessible for
computational analysis (Table 4). For instance, Memorial
Sloan-Kettering Cancer Center and the Institute of
Bioinformatics have collaboratively developed ten large
cancer-focused signaling pathways (http://cancer.cellmap.org).
Metabolite profiles.Metabolomics involves measurement of

metabolite concentrations and fluxes in cells and tissues [38].
Such measurements provide insight into the response of
biological systems to genetic and environmental influences.
Metabolites provide important markers for disease state and

Table 4. Human-Focused Pathway Repositories

Public Data Source Data Description

Kyoto Encyclopedia of Genes and Genomes

(KEGG) [92]; HumanCyc [93]

Metabolic pathways Biochemical reactions geared

toward metabolite conversions

Reactome [94], PANTHER [95], BioCarta

http://biocarta.com, INOH http://inoh.org,

The cancer cell map http://cancer.cellmap.org

Signaling pathways Protein–protein interactions and

post-translational modifications

Biomolecular Interaction Network Database (BIND) [96],

Human Protein Reference Database (HPRD) [97]

Molecular interactions/proteomics Molecular interactions, such as

protein–protein and protein–DNA,

without much detail, but with

extensive coverage [98]

Jasper, Transfac [99]

(commercial)

Gene regulation networks Links transcription factors and the

genes they regulate

BioGRID [100] Protein and Genetic interactions Interactions between genes such as

epistasis or synthetic lethality

doi:10.1371/journal.pcbi.0030012.t004

Table 3. Proteomics Repositories

Public Data Source Data Description

Plasma Proteome Project (HUPO-PPP) [87] 9,504 high-confidence identifications Identifications in the blood plasma proteome

Global Proteome Machine (GPM) [88] 3,411,277 proteins; 17,005,857 peptides;

16 organismal proteomes

Laboratory-submitted peptide mass spectra

Proteomics Identifications Database (PRIDE) [89] 215,621 proteins; 770,171 peptides;

160,788 spectra

Global repository for peptide/protein

identification data

PeptideAtlas [90] 338,200 MS/MS spectra;

36,653 peptides (Human)

Compendium incorporating annotation of

human genomic sequence with observed

expressed peptides

Human Protein Atlas (HPR) [91] 1514 antibodies; 1,238,760 images Expression and localization of proteins in

normal human tissue and cancer cells

doi:10.1371/journal.pcbi.0030012.t003
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the pathways underlying drug metabolism. Metabolomic
profiles can be used for classifying disease by type and stage,
for prognosis, and for testing the effectiveness of therapeutics
using statistical learning methods. For example, high-
resolution magic angle spinning NMR (HRMAS–NMR), which
can quantitatively identify a range of metabolites while
leaving the tissue sample intact for further studies, has been
used to profile and classify prostate tumors [39] and to detect
drug efficacy in liposarcoma [40].

Biological images. Advances in optics, digital detectors, and
automation have significantly improved biological imaging
technology and have led to a large increase of quantitative
information extracted from digital images. Fluorescent and
confocal microscopy, and whole-body imaging of model
organisms [41,42] can be used to test specific hypotheses of
cellular function and disease. Deep tissue–penetrating
infrared light and various alterations of two-photon laser
scanning microscopy (2PLSM) have been successfully used to
reveal the dynamic nature and spatio–temporal aspects of
hematopoietic tissue [43], organ development [44], and
neurobiology [45]. Fluorescent proteins and photo bleaching
techniques enable visualization of protein localization,
protein–protein interactions, and protein fate in vivo [46]. In
clinical settings, particularly for solid tumors, better resolution

and higher contrast dyes have allowed the use of magnetic
resonance imaging (MRI), computed tomography (CT) scan,
positron emission tomography (PET) scan, and ultrasound for
diagnosis and tracking disease progression. As imaging data is
highly context-specific, data aggregation from multiple
sources is possible only if sufficient metadata on samples,
microscope, and data derivation algorithms are available.
Clinical data. Clinical data is information about patients

that is collected using surveys, during doctors’ office visits,
through administration of standard treatment procedures, or
during clinical trials. Typical cancer clinical trials are
conducted to determine the safety and efficacy of a drug in
humans and depend on detailed patient information for
accurate interpretation of results. Clinical trials range from
pilot studies for feasibility assessment of the trial to more
involved Phase I to IV trials [47]. Patient data collected during
clinical trials includes family history (for example, if mother
or sister had breast cancer), habits (for example, smoking/
drinking), concomitant medications, alternate therapies,
baseline characteristics preceding treatment, diagnostic
parameters and clinical staging, treatment and procedural
details, adverse events (toxicity), and clinical endpoints (for
example disease recurrence or survival). For example, in solid
tumors, tumor measurement is done at prespecified intervals

Table 5. Data Standardization Efforts in Biomedical Research

Type

of Data

Standard Developing

Agency

Description

Gene

annotation

Gene Ontology GO Consortium Controlled vocabulary describing genes and gene products

in terms of their associated biological processes, cellular

components, and molecular functions

Gene

expression

Minimal Information About a

Microarray Experiment (MIAME)

Microarray Gene Expression Data

Society (MGED)

Checklist of information to provide as metadata for any

microarray experiment http://www.mged.org/Workgroups/

MIAME/miame.html

MAGE-OM and MAGE-ML [101] MGED Data exchange model and XML data exchange format

http://www.mged.org/Workgroups/MAGE/mage.html

Proteomics PSI-OM, PSI-ML, Minimal Information

About a Proteomic Experiment (MIAPE)

Proteomic Standard Initiative (PSI) of

the Human Proteome Organization (HUPO)

Data exchange model, XML data exchange format, and

checklist of information to provide metadata for any

proteomic experiment

mzData and mzIdent PSI XML format for exchange of mass spectrometry spectra

(mzData) and protein identifications (mzIdent)

Pathways and

networks

Biological Pathway Exchange (BioPAX) The BioPAX Workgroup XML representation of pathway information for metabolic

pathways, molecular interactions, signaling and genetic

regulatory pathways http://www.biopax.org

CellML CellML Project, Bioengineering Institute,

The University of Auckland, New Zealand

XML-based standard for the storage and exchange of

mathematical models of pathways http://www.cellml.org

Systems Biology Markup Language (SBML) The SBML Team XML-based format for describing qualitative and

quantitative models of biochemical networks

http://www.sbml.org/index.psp

PSI-MI (Molecular Interaction) [102] PSI XML standard for representing molecular interactions

http://psidev.sourceforge.net

Biological

images

The Open Microscopy Environment (OME) Initiated in the labs of Jason Swedlow

(University of Dundee) and Peter Sorger (MIT)

Open source informatics framework for microscopic imaging.

The proposed OME data model and XML format, though

currently focused on fluorescence microscopy, are

extensible to any type of microscropic image

http://www.openmicroscropy.org

Clinical data Health Level Seven (HL7) HL7 organization Standard format and content for clinical and administrative

healthcare data exchange between applications

http://www.hl7.org

CDISC Clinical Data Interchange Standards

Consortium (CDISC)

Standards for acquiring and regulatory reporting of

clinical trial data primarily among pharmaceutical

companies http://www.cdisc.org

doi:10.1371/journal.pcbi.0030012.t005
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for response assessment according to standards such as
Response Evaluation Criteria in Solid Tumors (RECIST)
[48,49]. Clinical data is then used in clinical research, for
example, to relate exposure factors or treatment parameters
to clinical outcome. As clinical data is often collected
longitudinally at multiple visits, potentially by different
health professionals, organization and storage of the data in
standard formats is critical for analysis and interpretation.

Where Computational Biology Can Help
Data collection, organization, aggregation, and storage. To

effectively use genome-scale molecular information, it must
be collected, organized in a standard way, aggregated, and
stored so that it is widely accessible to the research
community. Aggregation is pooling data from multiple
experiments of the same type. The advantages of data
aggregation are: it can increase the sample size and lead to
improved statistical power for comparisons, and it can
improve coverage, for instance, over more cell types,
different parts of the tumor, or from different populations.
Public biomedical data repositories that organize, aggregate,
and store data from genome-scale molecular experiments are
increasingly available for diverse data types (Tables 1–4).

Data from these repositories support comprehensive
molecular analysis of tumors. For instance, commonly
activated gene signatures [50], coordinately regulated gene
modules involved in a biological process [51], and regulatory
programs that control disease development [52,53] in various
cancers have been identified by combining data from
multiple microarray datasets. This dataset pooling or meta-
analysis helps draw inferences that may not be possible with a
single study with a limited number of samples/observations.

However, data aggregation is difficult unless standard
methods for data collection, organization, archiving, and
exchange are developed and followed. Table 5 summarizes
some of the standards for different types of biological data.
Development and community-wide use of standards enhances
the ability of research groups to exchange data and provides a
strong foundation on which to build data storage, processing,
and analysis software.

In Box 1 we present a case study on Oncomine—a
microarray data aggregation platform—highlighting the
challenges encountered in aggregating microarray data from
multiple sources and the opportunities that it provides.

Data integration. Data integration is the combination of
heterogeneous biological data encoded with different
semantics. Integration of heterogeneous data is useful not
only to validate and to improve confidence in experimental
results but also to develop more complete models of
biological systems. For instance, real time quantitative RT–
PCR data are routinely used to validate cDNA array
experiment results. Integration of gene expression and
proteomics data, for example, could be used to identify post-
transcriptional or post-translational modifications. It could
also provide insights into the advantages and shortcomings of
particular experimental methods.
The integration of diverse experimental data to build

models of biological processes, or pathways, will boost our
ability to identify clinical markers and therapeutic targets
and to interpret genotype information. For instance, a
marker such as prostate specific antigen (PSA) may be widely
known and used clinically without much knowledge about its
biology. Knowing the pathway involving the marker gene
allows other pathway components, or the entire pathway, to
serve as a more specialized marker.
Clinical data, securely and ethically accessed, can be

integrated with molecular data from basic research to gain
insight into disease state and lead to better treatments.
Molecular and clinical data has been integrated for
identification of clinically relevant subtypes of leukemia with
100% sensitivity and specificity [54]. Analysis of molecular
profiles on biospecimens from patients before, during, and
after therapy can lead to identification of drug-responsive or
nonresponsive profiles that could be used to optimize choice
of therapy. In the case of advanced non-small cell lung cancer
(NSCLC), a significant difference in response to the kinase
inhibitor gefitinib (Iressa) was observed for patients with
mutations or amplifications in the EGFR gene [55,56].
Comparison of patient molecular profiles with poor and
favorable outcomes can be used to predict disease outcome
(prognosis). For example, in breast cancer patients, the
estrogen-receptor status of the primary tumor and other
clinical features have been used to construct nomograms that
predict the likelihood of developing non-sentinel lymph node
(non-SLN) metastases. Such information can be used to assess
metastatic risk and the need for complete axillary lymph
node dissection [57]. Additionally, a 32-gene expression
signature distinguished p53-mutant and wild-type breast

Box 1. Oncomine: A Case Study in Microarray Data Aggregation and Analysis

The Oncomine cancer microarray database is an integrated meta-analysis platform that overcame diverse data integration and normalization
challenges to enable comprehensive analysis of complex multistudy disease datasets [52,53,68]. A software pipeline was developed to parse gene
expression data, raw or log-transformed, from native formats into numeric matrices of reporter rows and sample columns excluding study-specific
normalization. Comprehensive mapping of probe identifiers (IDs) from oligonucleotide arrays or IMAGE clone IDs from cDNA arrays to a common
Unigene build, Genbank accession numbers, and other commonly used database identifiers that link to gene annotation was also critical. Samples were
renamed and reassigned using NCI nomenclature for consistency across studies. Lack of adherence of the individual datasets to any common standards,
such as MIAME, complicated the data aggregation process. Another major hurdle was the complexity and non-uniformity of sample description
information. For example, diverse representations of clinical sample description make it difficult to compare histological data, such as Gleason score for
prostate tumors or Estrogen receptor status for breast carcinomas. This problem was addressed by mapping to a common data format using
parameter/value pairs. Finally, each study was independently normalized and archived in a relational database. A large amount of software engineering
work was required to deal with the structure and large size of gene expression data and provide a robust query and analysis tool.

Software platforms such as Oncomine are important for discovery and algorithm development. When mined using appropriate algorithms, such as the
cancer outlier profile analysis (COPA) method, they can supplement experiments to make fundamental contributions to cancer genetics [69]. The
challenges encountered during the creation of Oncomine emphasize the need for data representation standards and public data warehouses that
transcend a single community’s needs to allow for integrative studies. Statistical normalization and analysis methods for such integrated datasets are
also required. Further enriching transcriptome data with complementary information, such as quantitative proteomic data, will present new challenges
resulting from even higher data-dimensionality and volume, concordance and discordance between mRNA and corresponding protein data, and
potential for information conflict, but also will provide new opportunities for discovery [70–72].
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tumors of different histologies, and this strategy
outperformed sequence-based assessments of p53 in
predicting prognosis and therapeutic response [58].
Combination of molecular profiles with clinical profiles can
also help select patients for targeted treatment.

Effective integration of heterogeneous data is difficult
since important information necessary to decipher data
semantics, such as context, could be missing. It is often
possible for the human brain to infer this information using
prior knowledge, but such tasks have remained impossible to
encode into a model or rule-based computational procedure.
Thus, missing information can lead to errors during
integration. For example, a query may identify relevant
datasets labeled with the term metastasis. However, metastatic
processes could be different among tissues, so tissue
information is required to avoid errors in dataset selection.
Also, datasets labeled with alternate descriptions of
metastasis may be missed in the search. As another example,
proper mapping of gene and proteins between microarray
and mass spectrometry data is an important requirement for
integrating the datasets. This task could be confounded if the
measured gene transcript is a different splice variant than the
measured protein product. Thus, correct data integration
requires semantic compatibility among datasets and context
resolution.

In Box 2 we present two successful examples of how
integration of heterogeneous data from different sources can
help in biological discoveries. In the first example, publicly
available data was used to help identify LRPPRC as a specific
gene involved in Leigh syndrome, a complex hereditary
disease. In the other example, the discovery of the central
role of micropthalmia-associated transcription factor (MITF)
amplification to malignant melanoma was accomplished
using experimental and computational approaches to
integrate copy number data, with publicly available gene
expression and genome information. These examples provide
proof of principle that there already exists a wealth of
biological data in the public domain, and data integration
approaches can be used to better understand biology and
development of disease, including cancer.

Software systems and algorithms for data analysis. The
volume of the data generated by modern biomedical studies is

too large to be processed by the human brain alone. Data
storage, querying, and presentation software systems and
computational algorithms are required for effective
interpretation of large-scale experimental data. Automated
methods are now available to find genes or pathways that are
significantly differentially expressed using molecular profiles
[59–63]. The GOALIE algorithm maps the temporal evolution
of biological processes from time-course gene expression data
[64]. An algorithm for general integration of heterogeneous
data that differ in type and size has been proposed [65].
Further studies of pathways in the context of gene expression
and complementary genome-scale data will lead to the
discovery of new pathway components, some of which could
be new vulnerable points and therapeutic targets [66].
Pathway simulations, requiring detailed cellular models,

have been used in model organisms, such as Escherichia coli and
budding yeast, to find pathway regulators and to design new
experiments that test hypotheses about the function of the
pathway [67]. Applying these methods to predict the result of
a tumor-specific mutation in multicellular organisms using
human pathway information is an important research
direction and major challenge for computational biology.
Development of software systems that integrate diverse

biomedical research data types promise to support the study
of disease biology and development. For instance, the
REMBRANDT (Repository for Molecular Brain Neoplasia
Data) framework attempts to integrate clinical and molecular
data from the Glioma Molecular Diagnostic Initiative
(GMDI)—a collaborative effort of the NCI and the US
National Institute of Neurological Disorders and Stroke
(NINDS) (http://rembrandt.nci.nih.gov). REMBRANDT can be
used to query and generate statistical reports across all
component glioma (brain tumor) datasets.
Computational prediction of the biological effects of drugs

based on structure–function relationships across many targets
can help increase the success rate of clinical trials and may
forewarn of possible adverse events associated with the small-
molecule therapy. This strategy could also be used to develop
drug combinations to targetmultiple vulnerable points to shut
down tumor growth. ADME/Tox (absorption, distribution,
metabolism, excretion, and toxicity) prediction based on
molecular profiles can help eliminate candidate drugs that

Box 2. Data Integration for Biological Discovery: Case Studies

LRPPRC in Leigh syndrome. Data integration was applied to identify one of the genes responsible for Leigh syndrome [73]. Classical Leigh syndrome is
an early onset fatal neurodegenerative disorder characterized by bilateral lesions in the brain stem, basal ganglia thalamus, and spinal cord and is
known to involve a cytochrome c oxidase (COX) deficiency mapped to Chromosome 9 [74,75]. The French Canadian form of Leigh syndrome (LSFC) is
distinct and is known to involve a gene on Chromosome 2, where no known cytochrome c oxidase gene is localized [76]. However, clinical and
biochemical data suggest that a mitochondrial respiratory chain disorder is involved. From a genome-wide association study that mapped LSFC to
Chromosome 2p16–21, Mootha et al. collected 15 known and 15 predicted genes using the UCSC genome browser. Microarray databases from the
Whitehead, RIKEN array database and the Genomics Institute of the Novartis research foundation were then used to identify genes that coexpressed
with known mitochondrial genes. LRPPRC, which mapped to the LSFC candidate genomic region, showed the highest correlated gene expression with
known mitochondrial genes. LRPPRC was also found in a list of mitochondrial-associated proteins identified by mass spectrometry. Neither method
alone was enough to implicate the specific gene. Thus, data integration overcame the incomplete coverage, low sensitivity, or specificity limitations of
the individual experimental approaches.

MITF in malignant melanoma. Garraway et al. used an integrative approach to identify MITF as a ‘‘lineage survival’’ or ‘‘lineage addiction’’ oncogene
required for development and maintenance of malignant melanoma [77]. The authors used the NCI60 panel, which is a collection of 59 human cancer
cell lines derived from nine different types of tissues. SNP arrays of NCI60 cell lines were used to define genomic subclusters that were specifically
amplified in the melanoma subset. This information was then integrated with the publicly available NCI60 gene expression data generated by the
genomics institute of the Novartis foundation to correlate gene expression with the copy number gain. Remarkably, MITF was the only highly expressed
gene in the amplicon identified in the SNP array analysis. This result was validated using FISH and automated quantitative analysis (AQUA) of MITF
protein levels in patient samples. As before, public availability of gene expression data was instrumental for the authors to integrate expression data
with their own SNP data in defining the function of a gene in the context of cancer.
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have unacceptable toxicity early in the drug discovery process
and thus reduce the cost of drug development.

Social challenges for computational approaches.
Aggregating, integrating, and analyzing experimental data
from multiple sources must overcome social as well as
technical challenges. Critically, while archives of datasets
from molecular studies are often publicly available, a public
clinical counterpart remains largely unavailable due to
patient privacy concerns. Securely providing de-identified
patient data obtained with adequate patient consent, for
example, as per the US Health Insurance Portability and
Accountability Act (HIPAA) guidelines (http://www.hhs.gov/
ocr/hipaa), is a viable solution.

Data collected from biological samples must be clearly
annotated using standard representations, including
descriptions of the sample and experimental conditions.
Without such information data integration is significantly
more difficult, inefficient, and error-prone. Effort must be
spent to make data publicly available, to agree on and use
community standards, and most importantly to make
computational tools easy to use for biologists; these steps will
significantly improve the effectiveness of translational cancer
research. Computing infrastructure for facilitating data
aggregation/integration can use either centralized systems
wherein an investigator accesses a central computer system
that holds all the data, or, alternatively, federated systems
where an investigator sends a query and the system assembles
pertinent information from where it exists. Two examples of
research computer systems for data integration are caBIG
and BIRN’s cyber infrastructure. The Cancer Biomedical
Informatics Grid (caBIG) is a network to enable sharing of
data and software tools across individuals and cancer
research institutions to improve the pace of innovations in
cancer prevention and treatment (http://cabig.cancer.gov).
The Biomedical Informatics Research Network (BIRN) is a
distributed virtual community of shared resources that
currently supports the sharing and analysis of neuroimaging
data (http://www.nbirn.net).

Concluding Remarks
Computational biology is pivotal for to effectively use large

and diverse data resources to provide insights into disease
biology and to optimize treatment. Modeling and simulation
techniques, standards, and software systems must be
enhanced to deal with expanding molecular and clinical
information. Making well-organized experimental datasets
widely accessible will spur algorithm development, testing,
and comparison, leading to the development of better
computational methods. These new computational tools will
allow us to effectively interpret available genome-scale
datasets to improve disease diagnosis, prognosis, therapy, and
prevention. &
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