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Abstract. The biological interpretation of large-scale gene expression
data is one of the challenges in current bioinformatics. The state-of-the-
art approach is to perform clustering and then compute a functional
characterization via enrichments by Gene Ontology terms [1]. To better
assist the interpretation of results, it may be useful to establish connec-
tions among different clusters. This machine learning step is sometimes
termed cluster meta-analysis, and several approaches have already been
proposed; in particular, they usually rely on enrichments based on flat
lists of GO terms. However, GO terms are organized in taxonomical
graphs, whose structure should be taken into account when performing
enrichment studies. To tackle this problem, we propose a kernel approach
that can exploit such structured graphical nature. Finally, we compare
our approach against a specific flat list method by analyzing the cdc15-
subset of the well known Spellman’s Yeast Cell Cycle dataset [2].

1 Introduction

The biological interpretation of large-scale gene expression data is one of the
challenges in bioinformatics [3]. The state-of-the-art approach is to perform clus-
tering, in order to group together genes with similar expression profiles across
experiments; then, in order to provide a functional characterization [4], enrich-
ments of Gene Ontology [1] terms are computed for each cluster. In fact, it is
expected that groups of genes which perform a common function also behave in
a coordinated fashion. In addition, since different processes may contribute to
a common function, they could be associated to the same cluster (for instance,
both DNA repair and cell cycle arrest genes are both induced after DNA dam-
age). To further assist the result interpretation, it may be useful to establish
connections between different clusters; that is especially useful if they refer to
different tissues, or if they have been produced according to different experimen-
tal techniques. This machine learning task can be termed cluster meta-analysis,
and several approaches have already been proposed even if they usually rely on
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comparing enrichments built out of flat lists of GO terms [5]. However, Gene On-
tology terms are not mutually independent, but organized according to a graph
of taxonomical relations, and thus a flat list comparison approach may fail to
exploit this specific structured nature.

A particularly interesting problem of cluster meta-analysis arises when study-
ing time series expression data coming from microarray experiments (as in [6,
7]). In this case, clustering the entire profiles may not allow some temporally
localized relationships among genes to be detected. It may happen indeed that
some processes are associated (that is, their genes behave in a coordinate fashion)
only within a limited sequence of time-steps. Splitting microarray gene expres-
sion time series into shorter time-windows which can be clustered in separated
groups has been proposed in [8–10] and implemented in the GOALIE system
[11]. The GOALIE system provides a number of visualizers for navigating the set
of relationships induced by the GO enrichments of the clustering of the time-
windows. In order to compare these time-windows clusters, which are obtained
in a manner very similar to the one implemented in GOALIE, it is necessary to
take into account the different graph structures of their GO enrichments (GO
window graph), we propose to use a kernel measure of similarity. Because of their
theoretical potential as well as wide-range of applicability, kernel methods [12,
13] have proven to be among the currently most successful learning algorithms.
These methods work by embedding the data into a new features space and then
looking for relations between the data in that space. In this way complex rela-
tions can be simplified and then used, for example, for classification, regression,
clustering, etc.
The paper is organized as follows: in Section 2 we give a brief overview of the
Kernel Methods. In Section 3, we more formally address the underlying biological
problem and apply a valid kernel function to measure the similarities among
the objects of our model. In Section 4, we discuss the numerical results of our
evaluation experiments and finally in Section 5 we conclude and discuss some
directions for future work.

2 Kernel Functions and Graph Kernel

Kernel methods have been successful in solving different problems in machine
learning. The idea behind these approaches is to map implicitly the input data
(i.e. training set) into a new feature (Hilbert) space F in order to find there
some suitable hypothesis: in this way complex relations in the input space can
be simplified and more easily discovered. The feature map Φ in question is defined
by a kernel function k which allows to compute the inner product in F using
only objects of the input space, hence without carrying out the map Φ. This is
sometimes referred as the kernel trick.

Definition 1 (Kernel function). A kernel is a function K : X × X → IR
capable of representing through Φ : X → F the inner product of F i.e.

K(x, y) =< Φ(x), Φ(y) > (1)
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To assure that such equivalence exists a kernel must satisfy Mercer’s Theo-
rem. Hence, under certain conditions (for instance semi-definiteness of K), by
fixing a kernel one can assure the existence of a mapping Φ and a Hilbert space
F for which (1) holds. These functions can be interpreted as similarity measures
of data objects into a (generally non linearly related) feature space, therefore,
given K one can always induce a (non Euclidean) distance d : X ×X → IR such
that:

d2(x, y) = K(x, x) + K(y, y) − 2K(x, y) (2)

While working with spaces whose objects are more structured, one may
choose one of the many suitable kernels that exploit the underlying structure;
e.g., for the set G of undirected labeled graphs 3 a suitable measure for the simi-
larity between G1 and G2 counts the number of matching labeled random walks.
These measures were proposed by different authors (see for instance [14–17]).
Given a match, being obtained by comparing the label values associated to a
pair of nodes (or edges), the (kernel) similarity between two random walks is
then the product of the similarity values corresponding to the nodes and edges
encountered along the walk. The kernel value of two graphs is then the sum over
the kernel values of all pair of walks within these two graphs:

kgraph(G1, G2) =
∑

walk1∈G1

∑

walk2∈G2

kwalk(walk1, walk2) (3)

An elegant approach to construct such a similarity measure uses the direct
product graph [15]:

Definition 2 (Direct product of two labeled graphs). Given two labeled
graphs G1 = (V, E), G2 = (W, F ) the direct product is denoted by G1 × G2. The
vertex set V× and edge set E× of this direct product are respectively defined as:

V×(G1 × G2) = {(v1, w1) ∈ V × W : label(v1) = label(w1)} (4)
E×(G1 × G2) = {((v1, w1), (v2, w2)) ∈ V 2

×(G1 × G2) :
(v1, v2) ∈ E

∧ (w1, w2) ∈ F

∧ label(v1, v2) = label(w1, w2)}

3 Here we use the following notation: a graph G = (V, E) consists of a finite set of n
vertices V denoted by {v1, v2, . . . , vn}, and a set of directed (possibly, weighted)
edges E ⊆ V × V . A walk w on G is a sequence of indices (w1, w2, . . . , wt+1)
where (vwi , vwi+1 ) ∈ E for all 1 ≤ i ≤ t. A random walk is a walk where
IP(wi+1|w1, . . . , wi) = IP(wi+1|wi) = Awi,wi+1 , i.e., the probability at wi of pick-
ing wi+1 is directly proportional to the weight of the edge (vwi , vwi+1).
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The nodes and edges G1 × G2 have the same labels as the corresponding nodes
and edges in G1 and G2. Based on this definition the Random Walk Kernel is
then defined as follows.

Definition 3 (Random Walk Kernel).

k×(G1, G2) =
|V×|∑

i,j=1

[ ∞∑

n=0

λnAn
×

]

i,j

(5)

where A× is the adjacency matrix of the product graph:

[A×]i,j =
{

1 if (vi, vj) ∈ E×
0 otherwise (6)

Therefore the sum in (5) converges for a suitable choice of λ0, λ1, λ2 . . . [15]. In
this paper, as in [18], we compute the random walk kernel only for walks up to
a predetermined length.

3 Method

Groups of genes may behave in a coordinate manner, but over a period of time,
such coordination may be confined within some limited interval. Therefore, the
usual clustering of the entire profiles, while useful (as exploited in [6, 7]) may not
allow some relationships among genes to be detected. To overcome this problem,
it has already been suggested to split the time-series into shorter, partially-
overlapping time-windows [8–10]. In this section we design GO Window Graphs,
a kind of graphs where each node represents the functional enrichment of a
cluster of genes in a specific time-window, and then we provide patterns of
relations across time, by assembling the adjacent cluster pairs possessing minimal
dissimilarity. Apart from the time-windows breakdown, our approach is in the
vein of other works, such as [19, 20].

3.1 GO Graph Model

In more details, our analysis is conducted on the sets Si = {Ci,u : u = 1, . . . , N}
of N gene clusters obtained at step i ∈ {1, . . . , M} by splitting each time series
in M time-window intervals. For each of these clusters we compute a labeled GO
graph by attributing for each node v its GO term value (accessed as labelGO(v))
and its enrichment (log) p-value (accessed as labelp(v)).

3.2 A kernel for GO Window Graphs

The graph kernel defined in section 2 is designed for discrete attributes; in that
case two labeled nodes match whenever they share the same label values (i.e.
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their attribute). In our case labels are almost never completely identical since
they contain the (log) p-values of the enrichment computations. More precisely,
we apply the distance (2) induced from a specific kernel function that measures
(dis)similarity between the associated functional processes, in order to determine
a relationship L ⊆ S1×S2×...×SM which can be used to link similar GO Window
Graphs (i.e. clusters). One such suitable function can be constructed

– by considering in (4) a match between two vertex v1 and v2 if labelGO(v1) =
labelGO(v2), and

– by modifying as in [18] the adjacency matrix (6).

We have the following:

Definition 4. Given two graphs G1 = (V, E) and G2 = (W, F ) and two walks
walk1 = (v1, v2, . . . , vn) ∈ G1 and walk2 = (v1, v2, . . . , vn) ∈ G2, with vi ∈ V ,
wi ∈ W . The walk kernel is defined as

kwalk(walk1, walk2) = kstep((vi, vj), (wi, wj)) (7)

for each i and j.

The random kernel is still the sum over all kernel on pairs of walk as in [18]
and it can be computed with following adjacency:

[A×]((vi,wi),(vj ,wj)) =
{

kstep((vi, vj), (wi, wj)) if ((vi, vj), (wi, wj)) ∈ E×
0 otherwise (8)

with E× = E×(G1 × G2) and (vi, vj) ∈ E and (wi, wj) ∈ F .

Our step kernel has a simpler formulation having the goal of comparing only
the (log) p-values of the original node, the destination nodes and their respective
GO terms. More formally:

Definition 5 (Step kernel for GO graphs). For i = 1, . . . , n − 1, the step
kernel is defined as

kstep((vi, vj), (wi, wj)) (9)
= knodepv(vi, wi) ∗ knodeterm(vi, wi) ∗ knodepv(vj , wj) ∗ knodeterm(vj , wj)

where for knodepv we use the Brownian bridge kernel [21]

knodepv(x, x′) = max(0, c − |labelp(x) − labelp(x′)|) (10)

and for the kernel knodeterm on the GO terms, a Dirac function Kernel:

knodeterm(x, x′) =
{

1 if labelGO(x) = labelGO(x′)
0 otherwise. (11)
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Now, by defining U =
⋃

i Si and by following the same proof scheme of [18], we
can show that

k(Ci,u, Ci+1,v) =
|V×|∑

j=1

∞∑

n=0

λnAn
× (12)

is still a valid kernel on U × U . Thus, we have the following lemma.

Lemma 1. Let k be defined as in (12). Then it is a positive definite kernel
function.

Proof. The node kernel is a Brownian bridge kernel that is known to be positive
definite [21]. Since pointwise multiplication preserves positive definiteness, step
kernel is consequently positive definite. By fixing now k̃j

walk, for all these pairs
of walks of length j only and zero otherwise [16] we have that k̃j

walk is a tensor
product of step kernels for walks which is zero extended to the whole set of pair
of walks, hence is positive definite. Again, Kwalk is a sum over all k̃j

walk and
is valid as well. The modified random walk kernel follows being a convolution
kernel proven to be positive definite. Hence (12) can measure the similarity
among objects in U and specifically can perform the similarity for each x ∈ Si

and y ∈ Si+1.

Since each kernel induces a distance (2), here we take di : U × U → IR:

d(Ci,u, Ci+1,v)2 = k(Ci,u, Ci,u) + k(Ci+1,v, Ci+1,v) − 2k(Ci,u, Ci+1,v) (13)

Therefore it becomes quite natural to link the cluster Ci,u at time i with the
cluster Ci+1,v at time i + 1 on the base of the minimal distance value i.e.

Ci,u ∼ Ci+1,viff d(Ci,u, Ci+1,v) = min
Ci,m∈Si,Ci+1,n∈Si+1

d(Ci,m, Ci+1,n) (14)

4 Numerical Results

The purpose of the following analysis is mainly to compare the results of our
application against a specific flat list approach. The n-tuples in L ⊆ S1×S2×...×
SM are expected to contain clusters with functional homogeneity among each
other and maximum separation of functional annotations across clusters of other
n-tuples. Therefore we conducted numerical evaluations to assess two quality
indexes: (I) maximum density with minimum diversity within a cluster and (II)
maximum separation between clusters. This reflects one of the main approaches
in quality validation tests for a clustering technique. In general, DNA microarray
expression data-sets are grouped with the expectation that genes with similar
functional features group together. In order to fulfill this expectation, we have
applied the indexes for cohesiveness from [22] while performing the clustering
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at each “window-time interval”. We briefly report all these indexes to provide a
better understanding of our results.

The probability of selecting a gene associated to a functional group (identified
by a certain GO term) i within a cluster r can be estimated knowing the total
number of genes in r i.e. pir = ni

nr
and

∑
pir = 1. One can model the functional

cohesiveness within a cluster using Shannon’s information theory. Higher value
of cohesiveness of a cluster is measured by a high degree of certainty that the
genes in a cluster belongs to a functional group. Hence, the cohesiveness of a
cluster is its information content:

CC = −
k∑

i=1

pir log2(pir) (15)

In our application the relation L ⊆ S1×S2×...×SM is discovered step by step
by evaluating the kernel-induced distance between pair of clusters Ci,u, Ci+1,v

for each time-window interval i. That is, discharging the interval steps we can
consider this distance as a way to group together genes of the respective clusters
in the pair, where these genes share the same functional processes in an ideal
case. It seems, indeed quite natural to consider the cluster cohesiveness index
CC (15) when a cluster is defined as Ci,u ∪ Ci+1,v. Therefore, the total cluster
cohesiveness can be defined as

TCC = −
r=m∑

r=1

k∑

i=1

pir log2(pir) (16)

The functional separation across different clusters can be measured by esti-
mating the probability bir of selecting a gene of functional group i in cluster r
among all genes belonging to the functional group i, i.e. bir = nir

Ni
where nir is

the total number of genes of functional group i in cluster r, Ni the total number
of genes in the behavioral group i and

∑
bir = 1. The information content of

a functional group i in all the clusters reflects the specificity of the functional
group and thereby indicates the separation property, more formally:

GC = −
m∑

r=1

bir log2(bir), (17)

while the total cluster separation can be defined as

TGC = −
k∑

i=1

m∑

r=1

bir log2(bir) (18)

For a simple flat list approach we first removed from each cluster those terms
whose p-values was below a detection threshold and then applied as in (13) the
Jaccard distance index:
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Jaccard 1-2 2-3 Total

TCC 253.99 333.65 587.64
TGC 2134.9 2513.4 4648.30

Kernel 1-2 2-3 Total

TCC 276.41 303.45 579.86
TGC 2298.3 2341.3 4639.6

Table 1. The comparison of the cluster cohesiveness and separation indexes for con-
nected clusters between time windows 1 and 2, and between time windows 2 and 3.
The Kernel induced distance produces better results, although it is more expensive to
compute.

J(X, Y ) = 1 − |X ∩ Y |
|X ∪ Y | (19)

for each X and Y ∈
⋃

i Si.

4.1 Preliminary Analysis of the Yeast Cell Cycle Data-set

The Spellman’s Yeast Cell Cycle data-set [2] includes three main experiments:
cdc15, alpha-factor, elutriation (where the names correspond to the three dif-
ferent methods employed for cell synchronization). We have analyzed only the
cdc15 subset, which is 18 time-points long.

GO annotations of S. cerevisae genes have been downloaded from the SGD
database (http://www.yeastgenome.org). The GO DAG has been derived from
R package GO 1.14.1. Functional Enrichment p-values have been calculated ac-
cording to the hypergeometric distribution approximating Fisher’s exact test (a
standard in existing resources, such as [23–25]). GO terms annotating less than
4 genes of all genes from the experiment (“universe-set”) have been excluded
from the analysis. The p-value of GO terms with less than 5 genes in sample has
been arbitrarily set to 1 (not relevant at all).

The cdc15 data-set was divided into 5 time-windows, with 5 time-steps each,
with one overlapping time point. We have computed 15 clusters for each of the
first three time-windows using a standard k-means algorithm. Then we identified
the “most similar” pairs of adjacent clusters according to (i) the Kernel induced
distance and (ii) Jaccard coefficient.

Then, we have merged associated pairs clusters, obtaining new clusters. For
these, we have computed cluster cohesiveness and separation indexes, TCC and
TGC, which have been already described elsewhere in the paper. These display
a superior performance for the Kernel induced distance over the Jaccard coeffi-
cient. Table 1 shows some of these comparisons between the Jaccard coefficient
and the Kernel induced distance according to TCC and TGC.

In addition, we also ran two qualitative benchmarks to test our Kernel and
Jaccard performance. We have traced connections between clusters according to:
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translation and ribosome subgroup
4.70e-13 cytosolic large ribosomal subunit (sensu Eukaryota)
4.30e-11 translation
7.43e-11 structural constituent of ribosome
5.40e-07 cytosolic small ribosomal subunit (sensu Eukaryota)
1.22e-06 translational elongation
1.04e-4 ribosomal small subunit assembly and maintenance
2.60e-3 ribosome

cell wall, plasma membrane and vescicular compartments sub-group
1.04e-04 vacuolar transport
1.77e-03 endoplasmic reticulum
2.70e-03 transporter activity
3.40e-03 integral to membrane

Table 2. c8w1 enrichment reports these terms, ranked by their p-value.

– the absolute value of the intersection between the sets of genes,
– a manual curation.

For each connection found by Jaccard and Kernel, we specified whether it had
been found or not according to the other methods.

Again, the superiority of the Kernel approach is generally confirmed, al-
though a substantial disparity occurs between time window 1 to 2 and time
window 2 to 3 couplings, with the second one displaying a greater performance
difference.

5 Biological Results

The division of the Spellman Yeast Cell Cycle Data into windows of 5 time-
points, yields time windows roughly corresponding to two phases each:

– window 1 (1-5): G1, S (and partially G2)
– window 2 (5-9): G2, M (and partially G1)
– window 3 (9-13):G1, S

The discrepancy of window 1 and 2 w.r.t. holding exactly two phases is probably
due to synchronization, which alters the regularity in the very initial time-points
(see Figure 1 for details).

The demonstration of this statement is provided by the chart in Figure 1,
showing the normalized expression levels of a few marker genes.

To provide an example of the results yielded by our method, we consider
the maximal-similarity connections found among three adjacent clusters, respec-
tively belonging to time-window 1, 2 and 3 (they will be termed c8w1, c10w2,
c13w3 in Tables (2), (3), and (4)).

Therefore, a robust core of terms can be identified: (1) protein synthesis by
the cytoplasmic ribosome, (2) glycolysis and glyconeogenesis, and (3) cell wall,
plasma membrane and vescicular compartment.

Actually, c8w1 does not include glycolysis and glyconeogenesis genes, which
happen to be in a different cluster (c11w1); however, if we compare the profiles of
c11w1 and c8w1, we can see that they are quite correlated, displaying a slightly
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Fig. 1. Transcriptional profiles of cell cycle marker genes in [2] data, cdc15 subset.
CLN3p is required for M→G1 transition, and it also indirectly activates the SBF com-
plex. Swi4p is part of the transcription-regulating complex SBF, which binds its targets
in early G1, but it is active only in late G1, and is a key player for G1→S transition
(together with MBF, whose components are not reported); Clb6p is responsible for an
initial inactivation (through nuclear export) of SBF and MBF during S-phase; POL2
has been assumed as a rough predictor of DNA-replication activity under S-phase;
Clb1/2p are responsible for switching off SBF and MBF in G2 phase, and therefore are
key players of S→G2 transition. Comparing the peaking areas of Clbp6p and POL2,
and the depression areas of Clbp1/2p, it is evident that G1 and S phases are ”com-
pressed” in the initial time-steps.

increasing profile, although c11w1 is much more noisy; we probably observe
this discrepancy because clustering has not been optimized employing functional
annotation maximization as the objective for optimal k-means selection. We
intend to include this feature in an enhanced version of our method.

The relative stability of functional annotations in these clusters suggests
that regulation of basal metabolism and protein synthesis is coupled in the same
fashion through all the cell cycle, without any detectable de-coupling event.
Please note that these connections were not successfully found employing the
alternative method based on Jaccard coefficient.

6 Conclusion

We have presented an application of graph kernel methods to group clusters of
gene expression measurements organized over a time line. Our main contribution
is an initial kernel similarity function that considers the taxonomical graph struc-
ture nature of GO terms in the context of an enrichment procedure that takes
into account the temporal distribution of biological processes. The preliminary
experimental results on the Spellman’s Yeast Cell Cycle data-set encourage the
use of this application of graph kernels versus a simple flat list approach based
on the Jaccard distance index.

Our next concern will be to address the use of different kernel functions and
dissimilarity indexes to extend the range of applicability of our approach.
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translation and ribosome subgroup
1.33e-07 translational elongation
9.58e-06 ribosome
1.13e-05 cytosolic large ribosomal subunit (sensu Eukaryota)
1.25e-05 cytosolic small ribosomal subunit (sensu Eukaryota)
2.61e-05 translation
4.70e-05 structural constituent of ribosome
2.97e-03 translational initiation
glycolysis and glyconeogensis subgroup
2.62e-08 glycolysis
1.19e-06 gluconeogenesis
cell wall, plasma membrane and vescicular compartments subgroup
3.46e-08 membrane
7.93e-05 transporter activity
3.80e-04 cell wall (sensu Fungi)
7.86e-04 transport
2.46e-03 endoplasmic reticulum
3.00e-03 plasma membrane

Table 3. c10w2 enrichment reports these terms.

translation and ribosome subgroup
1.25e-05 translational elongation
2.54e-04 ribosome

glycolysis and glyconeogensis sub-group
4.121e-06 glycolysis
7.36e-06 gluconeogenesis
3.14e-05 hexose transport

cell wall, plasma membrane and vescicular compartments subgroup
1.89e-05 integral to plasma membrane
2.51e-05 transporter activity
3.14e-04 cell wall (sensu Fungi)
4.71e-04 plasma membrane
6.69e-04 membrane
3.79e-03 integral to membrane

Table 4. c13w3 enrichment reports these terms.
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